This bibliography contains a list of the papers that have been published using data from the Multimedia Evaluation Benchmark (MediaEval). It includes not only the papers from the proceedings of the yearly MediaEval workshop, but also conference and journal papers that have been published, as well as some theses. So far, we found 1135 papers that use data from MediaEval.

If you don’t see your paper here and would like to have it included, please get in touch with Mihai Gabriel Constantin: mihai.constantin84 (at) upb.ro.

  • Yadav, A., Gaba, S., Khan, H., Budhiraja, I., Singh, A., & Singh, K. K. (2023). ETMA: Efficient Transformer-Based Multilevel Attention Framework for Multimodal Fake News Detection. IEEE Transactions on Computational Social Systems.
  • Chen, J., Jia, C., Zheng, H., Chen, R., & Fu, C. (2023). Is multi-modal necessarily better? Robustness evaluation of multi-modal fake news detection. IEEE Transactions on Network Science and Engineering.
  • Ayoughi, M., Mettes, P., & Groth, P. (2023). Self-Contained Entity Discovery from Captioned Videos. ACM Transactions on Multimedia Computing, Communications and Applications, 19(5s), 1–21.
  • Zhang, M., Zhu, Y., Zhang, W., Zhu, Y., & Feng, T. (2023). Modularized composite attention network for continuous music emotion recognition. Multimedia Tools and Applications, 82(5), 7319–7341.
  • Hosseini, M., Sabet, A. J., He, S., & Aguiar, D. (2023). Interpretable fake news detection with topic and deep variational models. Online Social Networks and Media, 36, 100249.
  • Jing, J., Wu, H., Sun, J., Fang, X., & Zhang, H. (2023). Multimodal fake news detection via progressive fusion networks. Information Processing & Management, 60(1), 103120.
  • Avramidis, K., Stewart, S., & Narayanan, S. (2023). On the Role of Visual Context in Enriching Music Representations. ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 1–5.
  • Chadebecq, F., Lovat, L. B., & Stoyanov, D. (2023). Artificial intelligence and automation in endoscopy and surgery. Nature Reviews Gastroenterology & Hepatology, 20(3), 171–182.
  • Singh, P., Srivastava, R., Rana, K. P. S., & Kumar, V. (2023). SEMI-FND: stacked ensemble based multimodal inferencing framework for faster fake news detection. Expert Systems with Applications, 215, 119302.
  • Moriya, Y., & Jones, G. J. F. (2023). Improving Noise Robustness for Spoken Content Retrieval Using Semi-Supervised ASR and N-Best Transcripts for BERT-Based Ranking Models. 2022 IEEE Spoken Language Technology Workshop (SLT), 398–405.
  • Takashima, N., Li, F., Grzegorzek, M., & Shirahama, K. (2023). Embedding-based Music Emotion Recognition Using Composite Loss. IEEE Access.
  • Meel, P., & Vishwakarma, D. K. (2023). Multi-modal fusion using Fine-tuned Self-attention and transfer learning for veracity analysis of web information. Expert Systems with Applications, 229, 120537.
  • Sharma, D. K., & Garg, S. (2023). IFND: a benchmark dataset for fake news detection. Complex & Intelligent Systems, 9(3), 2843–2863.
  • Chen, Y., Li, D., Zhang, P., Sui, J., Lv, Q., Tun, L., & Shang, L. (2022). Cross-modal ambiguity learning for multimodal fake news detection. Proceedings of the ACM Web Conference 2022, 2897–2905.
  • Zeng, Y., Wang, Y., Liao, D., Li, G., Huang, W., Xu, J., Cao, D., & Man, H. (2022). Keyword-based diverse image retrieval with variational multiple instance graph. IEEE Transactions on Neural Networks and Learning Systems.
  • Singhal, S., Pandey, T., Mrig, S., Shah, R. R., & Kumaraguru, P. (2022). Leveraging intra and inter modality relationship for multimodal fake news detection. Companion Proceedings of the Web Conference 2022, 726–734.
  • Fu, B., & Sui, J. (2022). Multi-modal affine fusion network for social media rumor detection. PeerJ Computer Science, 8, e928.
  • Guo, H., Huang, T., Huang, H., Fan, M., & Friedland, G. (2022). Detecting COVID-19 Conspiracy Theories with Transformers and TF-IDF. ArXiv Preprint ArXiv:2205.00377.
  • Figuerêdo, J. S. L., & Calumby, R. T. (2022). Unsupervised query-adaptive implicit subtopic discovery for diverse image retrieval based on intrinsic cluster quality. Multimedia Tools and Applications, 81(30), 42991–43011.
  • Singh, P., Srivastava, R., Rana, K. P. S., & Kumar, V. (2022). SEMI-FND: Stacked Ensemble Based Multimodal Inference For Faster Fake News Detection. ArXiv Preprint ArXiv:2205.08159.
  • Khouakhi, A., Zawadzka, J., & Truckell, I. (2022). The need for training and benchmark datasets for convolutional neural networks in flood applications. Hydrology Research, 53(6), 795–806.
  • Khouakhi, A., Zawadzka, J., & Truckell, I. (2022). The need for training and benchmark datasets for convolutional neural networks in flood applications. Hydrology Research, 53(6), 795–806.
  • Alfarano, G. (2022). Detecting fake news using natural language processing [PhD thesis]. Politecnico di Torino.
  • Song, X. (2022). Innovation and Practice of Music Education Path in Colleges and Universities Under the Popularization of 5g Network.
  • Lu, Y., Yu, Z., Liu, J., An, Q., Chen, C., Li, Y., & Wang, Y. (2022). Assessing systemic vascular resistance using arteriolar pulse transit time based on multi-wavelength photoplethysmography. Physiological Measurement, 43(7), 075005.
  • Lu, Y., Yu, Z., Liu, J., An, Q., Chen, C., Li, Y., & Wang, Y. (2022). Assessing systemic vascular resistance using arteriolar pulse transit time based on multi-wavelength photoplethysmography. Physiological Measurement, 43(7), 075005.
  • Wei, P., Wu, F., Sun, Y., Zhou, H., & Jing, X.-Y. (2022). Modality and Event Adversarial Networks for Multi-Modal Fake News Detection. IEEE Signal Processing Letters, 29, 1382–1386.
  • Ottl, S., Amiriparian, S., Gerczuk, M., & Schuller, B. W. (2022). motilitAI: A machine learning framework for automatic prediction of human sperm motility. Iscience, 25(8).
  • Tsai, Y.-C., Pan, T.-Y., Kao, T.-Y., Yang, Y.-H., & Hu, M.-C. (2022). Emvgan: Emotion-aware music-video common representation learning via generative adversarial networks. Proceedings of the 2022 International Joint Workshop on Multimedia Artworks Analysis and Attractiveness Computing in Multimedia, 13–18.
  • Harrando, I. (2022). Representation, information extraction, and summarization for automatic multimedia understanding [PhD thesis]. Sorbonne Université.
  • Ahmad, K., Ayub, M. A., Khan, J., Ahmad, N., & Al-Fuqaha, A. (2022). Social media as an instant source of feedback on water quality. IEEE Transactions on Technology and Society.
  • Wu, C., Wu, F., Qi, T., Zhang, C., Huang, Y., & Xu, T. (2022). Mm-rec: Visiolinguistic model empowered multimodal news recommendation. Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2560–2564.
  • Patra, A. (2022). Deep learning for automated polyp detection and localization in colonoscopy [Master's thesis]. OsloMet-storbyuniversitetet.
  • Constantin, M. G., & Ionescu, B. (2022). Two-Stage Spatio-Temporal Vision Transformer for the Detection of Violent Scenes. 2022 14th International Conference on Communications (COMM), 1–5.
  • Tovstogan, P., & others. (2022). Exploration of music collections with audio embeddings [PhD thesis]. Universitat Pompeu Fabra.
  • Storås, A. M., Strümke, I., Riegler, M. A., & Halvorsen, P. (2022). Explainability methods for machine learning systems for multimodal medical datasets: research proposal. Proceedings of the 13th ACM Multimedia Systems Conference, 347–351.
  • Ştefan, L.-D., Constantin, M. G., Dogariu, M., & Ionescu, B. (2022). Overview of imagecleffusion 2022 task-ensembling methods for media interestingness prediction and result diversification. CLEF2022 Working Notes, CEUR Workshop Proceedings, CEUR-WS. Org, Bologna, Italy.
  • Constantin, M. G., Ştefan, L.-D., Dogariu, M., & Ionescu, B. (2022). Ai multimedia lab at imagecleffusion 2022: Deepfusion methods for ensembling in diverse scenarios. CLEF2022 Working Notes, CEUR Workshop Proceedings, CEUR-WS. Org, Bologna, Italy.
  • Jaisakthi, S. M., & Dhanya, P. R. (2022). Social Media Flood Image Classification Using Transfer Learning with EfficientNet Variants. In Communication and Intelligent Systems: Proceedings of ICCIS 2021 (pp. 759–770). Springer.
  • Pu, Y., Wu, X., Wang, S., Huang, Y., Liu, Z., & Gu, C. (2022). Semantic multimodal violence detection based on local-to-global embedding. Neurocomputing, 514, 148–161.
  • Xia, Y., Xu, F., & others. (2022). Study on Music Emotion Recognition Based on the Machine Learning Model Clustering Algorithm. Mathematical Problems in Engineering, 2022.
  • Jacobsen, F. L. (2022). Estimating Predictive Uncertainty in Gastrointestinal Image Segmentation [Master's thesis].
  • Wang, Q., Xiang, X., & Zhao, J. (2022). ML-TFN: Multi Layers Tensor Fusion Network for Affective Video Content Analysis. International Conference on Neural Computing for Advanced Applications, 184–196.
  • Akbar, A., Tahir, M. A., & Rafi, M. (2022). Transboundary Haze Prediction: Towards Time Series Forecasting of Cross-Data Analytics for Haze Prediction. 2022 International Conference on Emerging Trends in Smart Technologies (ICETST), 1–6.
  • Muszynski, M., Morgenroth, E., Vilaclara, L., Van De Ville, D., & Vuilleumier, P. (2022). Impact of aesthetic movie highlights on semantics and emotions: a preliminary analysis. Companion Publication of the 2022 International Conference on Multimodal Interaction, 52–60.
  • Xiao, P., Gou, P., Wang, B., Deng, E., & Zhao, P. (2022). Fine-Grained Gastrointestinal Endoscopy Image Categorization. Proceedings of the 3rd International Symposium on Artificial Intelligence for Medicine Sciences, 239–242.
  • Herrera Alba Garcı́a Deco, Constantin, M. G., Demarty, C.-H., Fosco, C., Halder, S., Healy, G., Ionescu, B., Matran-Fernandez, A., Smeaton, A. F., Sultana, M., & others. (2022). Experiences from the MediaEval Predicting Media Memorability Task. ArXiv Preprint ArXiv:2212.03955.
  • Hu, L., Zhao, Z., Ge, X., Song, X., & Nie, L. (2022). MMNet: Multi-modal Fusion with Mutual Learning Network for Fake News Detection. ArXiv Preprint ArXiv:2212.05699.
  • Wang, J.-H., Norouzi, M., & Tsai, S. M. (2022). Multimodal Content Veracity Assessment with Bidirectional Transformers and Self-Attention-based Bi-GRU Networks. 2022 IEEE Eighth International Conference on Multimedia Big Data (BigMM), 133–137.
  • Zhang, Y., Shao, Y., Zhang, X., Wan, W., Li, J., & Sun, J. (2022). BERT Based Fake News Detection Model. Training, 1530, 383.
  • Varshney, D., & Vishwakarma, D. K. (2022). A unified approach of detecting misleading images via tracing its instances on web and analyzing its past context for the verification of multimedia content. International Journal of Multimedia Information Retrieval, 11(3), 445–459.
  • Orjesek, R., Jarina, R., & Chmulik, M. (2022). End-to-end music emotion variation detection using iteratively reconstructed deep features. Multimedia Tools and Applications, 81(4), 5017–5031.
  • Liu, R., & Wu, X. (2022). Multimodal Attention Network for Violence Detection. 2022 2nd International Conference on Consumer Electronics and Computer Engineering (ICCECE), 503–506. https://doi.org/10.1109/ICCECE54139.2022.9712676
  • Singh, B., & Sharma, D. K. (2022). Predicting image credibility in fake news over social media using multi-modal approach. Neural Computing and Applications, 34(24), 21503–21517.
  • Raj, C., & Meel, P. (2022). People lie, actions Don’t! Modeling infodemic proliferation predictors among social media users. Technology in Society, 68, 101930.
  • Panagiotopoulos, A., Kordopatis-Zilos, G., & Papadopoulos, S. (2022). Leveraging Selective Prediction for Reliable Image Geolocation. International Conference on Multimedia Modeling, 369–381.
  • Algiriyage, N., Prasanna, R., Stock, K., Doyle, E. E. H., & Johnston, D. (2022). Multi-source multimodal data and deep learning for disaster response: a systematic review. SN Computer Science, 3, 1–29.
  • Manco, I., Benetos, E., Quinton, E., & Fazekas, G. (2022). Learning music audio representations via weak language supervision. ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 456–460.
  • Constantin, M. G., Ştefan, L.-D., & Ionescu, B. (2022). Exploring deep fusion ensembling for automatic visual interestingness prediction. Human Perception of Visual Information: Psychological and Computational Perspectives, 33–58.
  • Raj, C., & Meel, P. (2022). ARCNN framework for multimodal infodemic detection. Neural Networks, 146, 36–68.
  • Xiao, K., Qian, Z., & Qin, B. (2022). A survey of data representation for multi-modality event detection and evolution. Applied Sciences, 12(4), 2204.
  • Ali, H., Gilani, S. O., Khan, M. J., Waris, A., Khattak, M. K., & Jamil, M. (2022). Predicting Episodic Video Memorability Using Deep Features Fusion Strategy. 2022 IEEE/ACIS 20th International Conference on Software Engineering Research, Management and Applications (SERA), 39–46.
  • Elsaeed, E., Ouda, O., Elmogy, M. M., Atwan, A., & El-Daydamony, E. (2021). Detecting fake news in social media using voting classifier. IEEE Access, 9, 161909–161925.
  • Kumari, R., & Ekbal, A. (2021). Amfb: Attention based multimodal factorized bilinear pooling for multimodal fake news detection. Expert Systems with Applications, 184, 115412.
  • di Domenico, N. F. T. M. (2021). O Uso de Inferência Variacional para Reconhecimento de Emoçoes em Música [PhD thesis]. Universidade Federal do Rio de Janeiro.
  • Yuan, H., Zheng, J., Ye, Q., Qian, Y., & Zhang, Y. (2021). Improving fake news detection with domain-adversarial and graph-attention neural network. Decision Support Systems, 151, 113633.
  • Zhang, C., Yu, J., & Chen, Z. (2021). Music emotion recognition based on combination of multiple features and neural network. 2021 IEEE 4th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), 4, 1461–1465.
  • Dao, M.-S., Zettsu, K., & Rage, U. K. (2021). Image-2-aqi: Aware of the surrounding air qualification by a few images. Advances and Trends in Artificial Intelligence. From Theory to Practice: 34th International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, IEA/AIE 2021, Kuala Lumpur, Malaysia, July 26–29, 2021, Proceedings, Part II 34, 335–346.
  • Li, P., Sun, X., Yu, H., Tian, Y., Yao, F., & Xu, G. (2021). Entity-oriented multi-modal alignment and fusion network for fake news detection. IEEE Transactions on Multimedia, 24, 3455–3468.
  • Wu, Y., Zhan, P., Zhang, Y., Wang, L., & Xu, Z. (2021). Multimodal fusion with co-attention networks for fake news detection. Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, 2560–2569.
  • Hariharan, K., Lobo, A., & Deshmukh, S. (2021). Hybrid Approach for Effective Disaster Management Using Twitter Data and Image-Based Analysis. 2021 International Conference on Communication Information and Computing Technology (ICCICT), 1–6.
  • Adão Teixeira Marcos Vinı́cius, & Avila, S. (2021). What should we pay attention to when classifying violent videos? Proceedings of the 16th International Conference on Availability, Reliability and Security. https://doi.org/10.1145/3465481.3470059
  • Mohammed, S., Getahun, F., & Chbeir, R. (2021). 5W1H Aware Framework for Representing and Detecting Real Events from Multimedia Digital Ecosystem. European Conference on Advances in Databases and Information Systems, 57–70.
  • Koutini, K., Eghbal-zadeh, H., & Widmer, G. (2021). Receptive Field Regularization Techniques for Audio Classification and Tagging With Deep Convolutional Neural Networks. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 29, 1987–2000. https://doi.org/10.1109/TASLP.2021.3082307
  • Leyva, R., & Sanchez, V. (2021). Video Memorability Prediction Via Late Fusion Of Deep Multi-Modal Features. 2021 IEEE International Conference on Image Processing (ICIP), 2488–2492. https://doi.org/10.1109/ICIP42928.2021.9506411
  • Chen, J., Wu, Z., Yang, Z., Xie, H., Wang, F. L., & Liu, W. (2021). Multimodal Fusion Network with Latent Topic Memory for Rumor Detection. 2021 IEEE International Conference on Multimedia and Expo (ICME), 1–6. https://doi.org/10.1109/ICME51207.2021.9428404
  • Knox, D., Greer, T., Ma, B., Kuo, E., Somandepalli, K., & Narayanan, S. (2021). Loss Function Approaches for Multi-label Music Tagging. 2021 International Conference on Content-Based Multimedia Indexing (CBMI), 1–4. https://doi.org/10.1109/CBMI50038.2021.9461913
  • Yang, S.-wen, Chi, P.-H., Chuang, Y.-S., Lai, C.-I. J., Lakhotia, K., Lin, Y. Y., Liu, A. T., Shi, J., Chang, X., Lin, G.-T., Huang, T.-H., Tseng, W.-C., Lee, K.-tik, Liu, D.-R., Huang, Z., Dong, S., Li, S.-W., Watanabe, S., Mohamed, A., & Lee, H.-yi. (2021). SUPERB: Speech processing Universal PERformance Benchmark.
  • Pustu-Iren, K., Müller-Budack, E., Hakimov, S., & Ewerth, R. (2021). Visualizing Copyright-Protected Video Archive Content Through Similarity Search. International Conference on Theory and Practice of Digital Libraries, 123–127.
  • Yogapriya, J., Chandran, V., Sumithra, M. G., Anitha, P., Jenopaul, P., & Suresh Gnana Dhas, C. (2021). Gastrointestinal tract disease classification from wireless endoscopy images using pretrained deep learning model. Computational and Mathematical Methods in Medicine, 2021.
  • MOHAMED, M. A. R. W. A. H. U. S. S. I. E. N., KHAFAGY, M. O. H. A. M. E. D. H. E. L. M. Y., & HASAN, M. O. H. A. M. E. D. (2021). MUSIC RECOMMENDATION SYSTEM USED EMOTIONS TO TRACK AND CHANGE NEGATIVE USERS’MOOD. Journal of Theoretical and Applied Information Technology, 99(17).
  • Jiang, J., & Zhang, H. (2021). Research on the Method of Cross-modal Affective Association in Audiovisual. 2021 International Conference on Culture-Oriented Science & Technology (ICCST), 38–42. https://doi.org/10.1109/ICCST53801.2021.00019
  • Jony, R. I., Woodley, A., & Perrin, D. (2021). Flood Detection in Social Media Using Multimodal Fusion on Multilingual Dataset. 2021 Digital Image Computing: Techniques and Applications (DICTA), 01–08. https://doi.org/10.1109/DICTA52665.2021.9647169
  • Tirupattur, P., Schulze, C., & Dengel, A. (2021). Violence Detection in Videos. ArXiv Preprint ArXiv:2109.08941.
  • Roy, A., & Ekbal, A. (2021). MulCoB-MulFaV: Multimodal Content Based Multilingual Fact Verification. 2021 International Joint Conference on Neural Networks (IJCNN), 1–8. https://doi.org/10.1109/IJCNN52387.2021.9533916
  • Godwin, T., Rizos, G., Baird, A., Al Futaisi, N. D., Brisse, V., & Schuller, B. W. (2021). Evaluating deep music generation methods using data augmentation. 2021 IEEE 23rd International Workshop on Multimedia Signal Processing (MMSP), 1–6.
  • Jaiswal, R., Singh, U. P., & Singh, K. P. (2021). Fake News Detection Using BERT-VGG19 Multimodal Variational Autoencoder. 2021 IEEE 8th Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON), 1–5. https://doi.org/10.1109/UPCON52273.2021.9667614
  • Brown, A., Coto, E., & Zisserman, A. (2021). Automated video labelling: Identifying faces by corroborative evidence. 2021 IEEE 4th International Conference on Multimedia Information Processing and Retrieval (MIPR), 77–83.
  • Cheema, G. S., Hakimov, S., Müller-Budack, E., & Ewerth, R. (2021). On the role of images for analyzing claims in social media. ArXiv Preprint ArXiv:2103.09602.
  • Tuan, N. M. D., & Minh, P. Q. N. (2021). Multimodal fusion with BERT and attention mechanism for fake news detection. 2021 RIVF International Conference on Computing and Communication Technologies (RIVF), 1–6.
  • Sweeney, L., Healy, G., & Smeaton, A. F. (2021). The influence of audio on video memorability with an audio gestalt regulated video memorability system. 2021 International Conference on Content-Based Multimedia Indexing (CBMI), 1–6.
  • Kordopatis-Zilos, G., Galopoulos, P., Papadopoulos, S., & Kompatsiaris, I. (2021). Leveraging efficientnet and contrastive learning for accurate global-scale location estimation. Proceedings of the 2021 International Conference on Multimedia Retrieval, 155–163.
  • Hassan, S. Z., Ahmad, K., Riegler, M. A., Hicks, S., Conci, N., Halvorsen, P., & Al-Fuqaha, A. (2021). Visual Sentiment Analysis: A Natural DisasterUse-case Task at MediaEval 2021. ArXiv Preprint ArXiv:2111.11471.
  • Yange, T. S., Egbunu, C. O., Onyekware, O., Rufai, M. A., & Godwin, C. (2021). Violence Detection in Ranches Using Computer Vision and Convolution Neural Network. Journal of Computer Scine and Information Technology, 94–104.
  • Elsaeed, E., Ouda, O., Elmogy, M. M., Atwan, A., & El-Daydamony, E. (2021). Detecting fake news in social media using voting classifier. IEEE Access, 9, 161909–161925.
  • Tan, H. H. (2021). Semi-supervised music emotion recognition using noisy student training and harmonic pitch class profiles. ArXiv Preprint ArXiv:2112.00702.
  • Wu, Z., Chen, J., Yang, Z., Xie, H., Wang, F. L., & Liu, W. (2021). Cross-modal attention network with orthogonal latent memory for rumor detection. Web Information Systems Engineering–WISE 2021: 22nd International Conference on Web Information Systems Engineering, WISE 2021, Melbourne, VIC, Australia, October 26–29, 2021, Proceedings, Part I 22, 527–541.
  • Kiziltepe, R. S., Sweeney, L., Constantin, M. G., Doctor, F., Herrera Alba Garcı́a Seco, Demarty, C.-H., Healy, G., Ionescu, B., & Smeaton, A. F. (2021). An annotated video dataset for computing video memorability. Data in Brief, 39, 107671.
  • Kiziltepe, R. S., Sweeney, L., Constantin, M. G., Doctor, F., Herrera Alba Garcı́a Seco, Demarty, C.-H., Healy, G., Ionescu, B., & Smeaton, A. F. (2021). An annotated video dataset for computing video memorability. Data in Brief, 39, 107671.
  • Zhang, D., Nayak, R., & Bashar, M. A. (2021). Exploring fusion strategies in deep learning models for multi-modal classification. Australasian Conference on Data Mining, 102–117.
  • Alonso-Bartolome, S., & Segura-Bedmar, I. (2021). Multimodal fake news detection. ArXiv Preprint ArXiv:2112.04831.
  • Kiziltepe, R. S., Constantin, M. G., Demarty, C.-H., Healy, G., Fosco, C., Herrera Alba Garcı́a Seco, Halder, S., Ionescu, B., Matran-Fernandez, A., Smeaton, A. F., & others. (2021). Overview of the MediaEval 2021 predicting media memorability task. ArXiv Preprint ArXiv:2112.05982.
  • Martin, P.-E. (2021). Spatio-Temporal CNN baseline method for the Sports Video Task of MediaEval 2021 benchmark. ArXiv Preprint ArXiv:2112.12074.
  • Zahra, A., & Martin, P.-E. (2021). Two stream network for stroke detection in table tennis. ArXiv Preprint ArXiv:2112.12073.
  • Sweeney, L., Healy, G., & Smeaton, A. F. (2021). Predicting media memorability: comparing visual, textual and auditory features. ArXiv Preprint ArXiv:2112.07969.
  • El Vaigh, C. B., Girault, T., Mallart, C., & Nguyen, D. H. (2021). Detecting Fake News Conspiracies with Multitask and Prompt-Based Learning. MediaEval 2021-MediaEval Multimedia Evaluation Benchmark. Workshop, 1–3.
  • Ahmad, K., Ayub, M. A., Ahmad, K., Al-Fuqaha, A., & Ahmad, N. (2021). Deep Models for Visual Sentiment Analysis of Disaster-related Multimedia Content. ArXiv Preprint ArXiv:2112.12060.
  • Zhou, Y., Gonzalez, A., Tabassum, P., & Tesic, J. (2021). DL-TXST NewsImages: Contextual Feature Enrichment for Image-Text Rematching. Proceedings of the MediaEval Benchmarking Initiative for Multimedia Evaluation.
  • Shebaro, M., Oliver, J., Olarewaju, T., & Tesic, J. (2021). DL-TXST fake news: Enhancing tweet content classification with adapted language models. Working Notes Proceedings of the MediaEval 2021 Workshop, Online, 13–15.
  • Coutinho, E., Alshukri, A., de Berardinis, J., & Dowrick, C. (2021). POLYHYMNIA Mood–Empowering people to cope with depression through music listening. Adjunct Proceedings of the 2021 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2021 ACM International Symposium on Wearable Computers, 188–193.
  • Li, H., Bo, H., Ma, L., Wang, L., & Li, H. (2021). Music Emotion Recognition through Sparse Canonical Correlation Analysis. 2021 IEEE 4th International Conference on Multimedia Information Processing and Retrieval (MIPR), 354–359.
  • Huang, J., He, R., Chen, J., Li, S., Deng, Y., & Wu, X. (2021). Boosting advanced nasopharyngeal carcinoma stage prediction using a Two-stage classification framework based on deep learning. International Journal of Computational Intelligence Systems, 14, 1–14.
  • Martin, P.-E., Calandre, J., Mansencal, B., Benois-Pineau, J., Péteri, R., Mascarilla, L., & Morlier, J. (2021). Sports video: Fine-grained action detection and classification of table tennis strokes from videos for mediaeval 2021. ArXiv Preprint ArXiv:2112.11384.
  • Tovstogan, P., Bogdanov, D., & Porter, A. (2021). Media-Eval 2021: Emotion and Theme Recognition in Music Using Jamendo. Proc. of the MediaEval 2021 Workshop, Online, 13–15.
  • Claveau, V., Chaffin, A., & Kijak, E. (2021). Generating artificial texts as substitution or complement of training data. ArXiv Preprint ArXiv:2110.13016.
  • Wang, H. (2021). Research on the application of wireless wearable sensing devices in interactive music. Journal of Sensors, 2021, 1–8.
  • Bhattacharjee, S. D., & Yuan, J. (2021). Multimodal co-training for fake news identification using attention-aware fusion. Asian Conference on Pattern Recognition, 282–296.
  • Azri, A., Favre, C., Harbi, N., Darmont, J., & Noûs, C. (2021). MONITOR: A Multimodal Fusion Framework to Assess Message Veracity in Social Networks. European Conference on Advances in Databases and Information Systems, 73–87.
  • Mahalle, M. D., & Rojatkar, D. V. (2021). Audio Based Violent Scene Detection Using Extreme Learning Machine Algorithm. 2021 6th International Conference for Convergence in Technology (I2CT), 1–8.
  • Xue, J., Wang, Y., Tian, Y., Li, Y., Shi, L., & Wei, L. (2021). Detecting fake news by exploring the consistency of multimodal data. Information Processing & Management, 58(5), 102610.
  • Aktas, K., Demirel, M., Moor, M., Olesk, J., Ozcinar, C., & Anbarjafari, G. (2021). Spatiotemporal based table tennis stroke-type assessment. Signal, Image and Video Processing, 1–8.
  • Dharmapriya, J., Dayarathne, L., Diasena, T., Arunathilake, S., Kodikara, N., & Wijesekera, P. (2021). Music Emotion Visualization through Colour. 2021 International Conference on Electronics, Information, and Communication (ICEIC), 1–6.
  • Shu, Y., Li, Q., Xu, C., Liu, S., & Xu, G. (2021). V-SVR+: Support Vector Regression with Variational Privileged Information. IEEE Transactions on Multimedia.
  • Constantin, M. G., Ştefan, L.-D., Ionescu, B., Duong, N. Q. K., Demarty, C.-H., & Sjöberg, M. (2021). Visual Interestingness Prediction: A Benchmark Framework and Literature Review. International Journal of Computer Vision, 1–25.
  • Jha, D., Ali, S., Hicks, S., Thambawita, V., Borgli, H., Smedsrud, P. H., de Lange, T., Pogorelov, K., Wang, X., Harzig, P., & others. (2021). A comprehensive analysis of classification methods in gastrointestinal endoscopy imaging. Medical Image Analysis, 70, 102007.
  • Khadka, R. (2021). Meta-Learning for Medical Image Segmentation [PhD thesis]. University OF Trieste.
  • Somandepalli, K., Guha, T., Martinez, V. R., Kumar, N., Adam, H., & Narayanan, S. (2021). Computational media intelligence: human-centered machine analysis of media. Proceedings of the IEEE.
  • Tomar, N. K., Jha, D., Ali, S., Johansen, H. D., Johansen, D., Riegler, M. A., & Halvorsen, P. (2021). DDANet: Dual decoder attention network for automatic polyp segmentation. International Conference on Pattern Recognition, 307–314.
  • Kalakota, V., & Bansal, A. (2021). Diversifying Relevant Search Results from Social Media using Community Contributed Images. 2021 IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC), 376–385.
  • Thao, H. T. P., Balamurali, B. T., Herremans, D., & Roig, G. (2021). AttendAffectNet: Self-Attention based Networks for Predicting Affective Responses from Movies. 2020 25th International Conference on Pattern Recognition (ICPR), 8719–8726.
  • Hu, Y., Settle, S., & Livescu, K. (2021). Acoustic span embeddings for multilingual query-by-example search. 2021 IEEE Spoken Language Technology Workshop (SLT), 935–942.
  • Constantin, M. G., Ştefan, L.-D., & Ionescu, B. (2021). DeepFusion: Deep Ensembles for Domain Independent System Fusion. International Conference on Multimedia Modeling, 240–252.
  • da Fonseca, G. B., Sargent, G., Sicre, R., Patrocı́nio Zenilton KG, Gravier, G., & Guimaraes, S. J. F. (2021). Hierarchical multi-label propagation using speaking face graphs for multimodal person discovery. Multimedia Tools and Applications, 80(2), 2797–2820.
  • Zhao, Y., & Guo, J. (2021). MusiCoder: A Universal Music-Acoustic Encoder Based on Transformer. International Conference on Multimedia Modeling, 417–429.
  • Formal, T., Clinchant, S., Renders, J.-M., Lee, S., & Cho, G. H. (2020). Learning to Rank Images with Cross-Modal Graph Convolutions. Advances in Information Retrieval: 42nd European Conference on IR Research, ECIR 2020, Lisbon, Portugal, April 14–17, 2020, Proceedings, Part I 42, 589–604.
  • Maia, A. F. L. (2020). Assessing the emotional impact of video using machine learning techniques [Master's thesis].
  • Yue, F., Li, J., & Sun, J. (2020). Insights of Feature Fusion for Video Memorability Prediction. International Forum on Digital TV and Wireless Multimedia Communications, 239–248.
  • Zhang, M., Zhong, W., Ye, L., Fang, L., & Zhang, Q. (2020). Synchronous Prediction of Continuous Affective Video Content Based on Multi-task Learning. International Forum on Digital TV and Wireless Multimedia Communications, 227–238.
  • Martin, P.-E. (2020). Fine-grained action detection and classification from videos with spatio-temporal convolutional neural networks: Application to Table Tennis. [PhD thesis]. Université de Bordeaux.
  • Lopez-Fuentes, L., Farasin, A., Zaffaroni, M., Skinnemoen, H., & Garza, P. (2020). Deep Learning Models for Road Passability Detection during Flood Events Using Social Media Data. Applied Sciences, 10(24), 8783.
  • Jain, P., Schoen-Phelan, B., & Ross, R. (2020). Tri-Band Assessment of Multi-Spectral Satellite Data for Flood Detection. MACLEAN@ PKDD/ECML.
  • Duong, D. Q., Le, Q. M., Nguyen-Tai, T.-L., Bo, D., Nguyen, D., Dao, M.-S., & Nguyen, B. T. (2020). Multi-source Machine Learning for AQI Estimation. 2020 IEEE International Conference on Big Data (Big Data), 4567–4576.
  • Xue, J., Wang, Y., Xu, S., Shi, L., Wei, L., & Song, H. (2020). MVFNN: Multi-Vision Fusion Neural Network for Fake News Picture Detection. International Conference on Computer Animation and Social Agents, 112–119.
  • Weber, E., Marzo, N., Papadopoulos, D. P., Biswas, A., Lapedriza, A., Ofli, F., Imran, M., & Torralba, A. (2020). Detecting natural disasters, damage, and incidents in the wild. European Conference on Computer Vision, 331–350.
  • Duong, N. (2020). Contributions in Audio Modeling and Multimodal Data Analysis via Machine Learning [PhD thesis]. Université de Rennes 1.
  • Thao, H. T. P. (2020). Deep Neural Networks for Predicting Affective Responses from Movies. Proceedings of the 28th ACM International Conference on Multimedia, 4743–4747.
  • Medico Multimedia Task at MediaEval 2020: Automatic Polyp Segmentation. (2020). Working Notes Proceedings of the MediaEval 2020 Workshop.
  • Adrian Krenzer, F. P. (2020). Bigger Networks are not Always Better: Deep Convolutional Neural Networks for Automated Polyp Segmentation. Working Notes Proceedings of the MediaEval 2020 Workshop.
  • Pyramid-Focus-Augmentation: Medical Image Segmentation with Step-Wise Focus. (2020). Working Notes Proceedings of the MediaEval 2020 Workshop.
  • Ahmed, A. M. A. (2020). Generative Adversarial Networks for Automatic Polyp Segmentation. Working Notes Proceedings of the MediaEval 2020 Workshop.
  • Khadka, R. (2020). Transfer of Knowledge: Fine-tuning for Polyp Segmentation with Attention. Working Notes Proceedings of the MediaEval 2020 Workshop.
  • HCMUS-Juniors 2020 at Medico Task in MediaEval 2020: Refined Deep Neural Network and U-Net for Polyps Segmentation. (2020). Working Notes Proceedings of the MediaEval 2020 Workshop.
  • A Temporal-Spatial Attention Model for Medical Image Detection. (2020). Working Notes Proceedings of the MediaEval 2020 Workshop.
  • Debapriya Banik, D. B. (2020). Deep Conditional Adversarial Learning for Polyp Segmentation. Working Notes Proceedings of the MediaEval 2020 Workshop.
  • Sahadev Poudel, S.-W. L. (2020). Automatic Polyp Segmentation Using Channel-Spatial Attention with Deep Supervision. Working Notes Proceedings of the MediaEval 2020 Workshop.
  • Tomar, N. K. (2020). Automatic Polyp Segmentation Using Fully Convolutional Neural Network. Working Notes Proceedings of the MediaEval 2020 Workshop.
  • Automatic Polyp Segmentation via Parallel Reverse Attention Network. (2020). Working Notes Proceedings of the MediaEval 2020 Workshop.
  • George Batchkala, S. A. (2020). Real-Time Polyp Segmentation Using U-Net with IoU Loss. Working Notes Proceedings of the MediaEval 2020 Workshop.
  • Depth-Wise Separable Atrous Convolution for Polyps Segmentation in Gastro-Intestinal Tract. (2020). Working Notes Proceedings of the MediaEval 2020 Workshop.
  • HCMUS at Medico Automatic Polyp Segmentation Task 2020: PraNet and ResUnet++ for Polyps Segmentation. (2020). Working Notes Proceedings of the MediaEval 2020 Workshop.
  • Shruti Shrestha, S. A., Bishesh Khanal. (2020). Ensemble U-Net Model for Efficient Polyp Segmentation. Working Notes Proceedings of the MediaEval 2020 Workshop.
  • Sabari Nathan, S. R. (2020). Efficient Supervision Net: Polyp Segmentation Using EfficientNet and Attention Unit. Working Notes Proceedings of the MediaEval 2020 Workshop.
  • Jaeyong Kang, J. G. (2020). KD-ResUNet++: Automatic Polyp Segmentation via Self-Knowledge Distillation. Working Notes Proceedings of the MediaEval 2020 Workshop.
  • Automatic Polyp Segmentation Using U-Net-ResNet50. (2020). Working Notes Proceedings of the MediaEval 2020 Workshop.
  • FakeNews: Corona Virus and 5G Conspiracy Task at MediaEval 2020. (2020). Working Notes Proceedings of the MediaEval 2020 Workshop.
  • Manfred Moosleitner, G. S., Benjamin Murauer. (2020). Detecting Conspiracy Tweets Using Support Vector Machines. Working Notes Proceedings of the MediaEval 2020 Workshop.
  • Chahat Raj, M. M. (2020). MediaEval 2020: An Ensemble-based Multimodal Approach for Coronavirus and 5G Conspiracy Tweet Detection. Working Notes Proceedings of the MediaEval 2020 Workshop.
  • Andrey Malakhov, S. B., Alessandro Patruno. (2020). Fake News Classification with BERT. Working Notes Proceedings of the MediaEval 2020 Workshop.
  • Manh Duc Tuan Nguyen, M. Q. N. P. (2020). FakeNews Detection Using Pre-trained Language Models and Graph Convolutional Networks. Working Notes Proceedings of the MediaEval 2020 Workshop.
  • Fake News Detection in Social Media Using Graph Neural Networks and NLP Techniques: A COVID-19 Use-Case. (2020). Working Notes Proceedings of the MediaEval 2020 Workshop.
  • Gullal Singh Cheema, R. E., Sherzod Hakimov. (2020). TIB’s Visual Analytics Group at MediaEval ’20: Detecting Fake News on Corona Virus and 5G Conspiracy. Working Notes Proceedings of the MediaEval 2020 Workshop.
  • de Rijk, L. (2020). You Said It? How Mis- and Disinformation Tweets Surrounding the Corona-5G-Conspiracy Communicate Through Implying. Working Notes Proceedings of the MediaEval 2020 Workshop.
  • Ferdinand Schaal, J. P. (2020). Using a Word Analysis Method and GNNs to Classify Misinformation Related to 5G-Conspiracy and the COVID-19 Pandemic. Working Notes Proceedings of the MediaEval 2020 Workshop.
  • Claveau, V. (2020). Detecting Fake News in Tweets from Text and Propagation Graph: IRISA’s Paritcipation to the FakeNews Task at MediaEval 2020. Working Notes Proceedings of the MediaEval 2020 Workshop.
  • Daniel Thilo Schroeder, J. L., Konstantin Pogorelov. (2020). Evaluating Standard Classifiers for Detecting COVID-19 Related Misinformation. Working Notes Proceedings of the MediaEval 2020 Workshop.
  • Enriching Content Analysis of Tweets Using Community Discovery Graph Analysis. (2020). Working Notes Proceedings of the MediaEval 2020 Workshop.
  • Detecting Conspiracy Theories from Tweets: Textual and Structural Approaches. (2020). Working Notes Proceedings of the MediaEval 2020 Workshop.
  • Pehlivan, Z. (2020). On the pursuit of Fake News : From Graph Convolutional Networks to Time Series. Working Notes Proceedings of the MediaEval 2020 Workshop.
  • Olga Papadopoulou, S. P., Giorgos Kordopatis-Zilos. (2020). MeVer Team Tackling Corona Virus and 5G Conspiracy Using Ensemble Classification Based on BERT. Working Notes Proceedings of the MediaEval 2020 Workshop.
  • Overview of MediaEval 2020 Predicting Media Memorability Task: What Makes a Video Memorable? (2020). Working Notes Proceedings of the MediaEval 2020 Workshop.
  • Dazhan Xu, G. S., Xiaoyu Wu. (2020). Media Memorability Prediction Based on Machine Learning. Working Notes Proceedings of the MediaEval 2020 Workshop.
  • Investigating Memorability of Dynamic Media. (2020). Working Notes Proceedings of the MediaEval 2020 Workshop.
  • Lorin Sweeney, A. F. S., Graham Healy. (2020). Leveraging Audio Gestalt to Predict Media Memorability. Working Notes Proceedings of the MediaEval 2020 Workshop.
  • Essex-NLIP at MediaEval Predicting Media Memorability 2020 Task. (2020). Working Notes Proceedings of the MediaEval 2020 Workshop.
  • Multi-Modal Ensemble Models for Predicting Video Memorability. (2020). Working Notes Proceedings of the MediaEval 2020 Workshop.
  • Predicting Media Memorability with Audio, Video, and Text representations. (2020). Working Notes Proceedings of the MediaEval 2020 Workshop.
  • Predicting Media Memorability from a Multimodal Late Fusion of Self-Attention and LSTM Models. (2020). Working Notes Proceedings of the MediaEval 2020 Workshop.
  • MediaEval 2020: Emotion and Theme Recognition in Music Using Jamendo. (2020). Working Notes Proceedings of the MediaEval 2020 Workshop.
  • Recognizing Song Mood and Theme: Leveraging Ensembles of Tag Groups. (2020). Working Notes Proceedings of the MediaEval 2020 Workshop.
  • Srividya Tirunellai Rajamani, B. S., Kumar Rajamani. (2020). Emotion and Theme Recognition in Music Using Attention-Based Methods. Working Notes Proceedings of the MediaEval 2020 Workshop.
  • HCMUS at MediaEval 2020: Emotion Classification Using Wavenet Feature with SpecAugment and EfficientNet. (2020). Working Notes Proceedings of the MediaEval 2020 Workshop.
  • Emotion and Themes Recognition in Music with Convolutional and Recurrent Attention-Blocks. (2020). Working Notes Proceedings of the MediaEval 2020 Workshop.
  • MediaEval 2020 Emotion and Theme Recognition in Music Task: Loss Function Approaches for Multi-label Music Tagging. (2020). Working Notes Proceedings of the MediaEval 2020 Workshop.
  • Alish Dipani, V. B., Gaurav Iyer. (2020). Recognizing Music Mood and Theme Using Convolutional Neural Networks and Attention. Working Notes Proceedings of the MediaEval 2020 Workshop.
  • Sports Video Classification: Classification of Strokes in Table Tennis for MediaEval 2020. (2020). Working Notes Proceedings of the MediaEval 2020 Workshop.
  • Soichiro Sato, M. A. (2020). Leveraging Human Pose Estimation Model for Stroke Classification in Table Tennis. Working Notes Proceedings of the MediaEval 2020 Workshop.
  • Jordan Calandre, L. M., Renaud Péteri. (2020). Four-Stream Network and Dynamic Images for Sports Video Classification: Classification of Strokes in Table Tennis. Working Notes Proceedings of the MediaEval 2020 Workshop.
  • HCMUS at MediaEval 2020: Ensembles of Temporal Deep Neural Networks for Table Tennis Strokes Classification Task. (2020). Working Notes Proceedings of the MediaEval 2020 Workshop.
  • Spatio-Temporal Based Table Tennis Hit Assessment Using LSTM Algorithm. (2020). Working Notes Proceedings of the MediaEval 2020 Workshop.
  • Classification of Strokes in Table Tennis with a Three Stream Spatio-Temporal CNN for MediaEval 2020. (2020). Working Notes Proceedings of the MediaEval 2020 Workshop.
  • The Flood-Related Multimedia Task at MediaEval 2020. (2020). Working Notes Proceedings of the MediaEval 2020 Workshop.
  • Rabiul Islam Jony, A. W. (2020). Flood Detection in Twitter Using a Novel Learning Method for Neural Networks. Working Notes Proceedings of the MediaEval 2020 Workshop.
  • Theodore Nikoletopoulos, C. W. (2020). A Tweet Text Binary Artificial Neural Network Classifier. Working Notes Proceedings of the MediaEval 2020 Workshop.
  • Floods Detection in Twitter Text and Images. (2020). Working Notes Proceedings of the MediaEval 2020 Workshop.
  • Flood Detection via Twitter Streams Using Textual and Visual Features. (2020). Working Notes Proceedings of the MediaEval 2020 Workshop.
  • Ensemble Based Method for the Classification of Flooding Event Using Social Media Data. (2020). Working Notes Proceedings of the MediaEval 2020 Workshop.
  • Overview of MediaEval 2020 Insights for Wellbeing: Multimodal Personal Health Lifelog Data Analysis. (2020). Working Notes Proceedings of the MediaEval 2020 Workshop.
  • Dat Q. Duong, D. T. N., Quang M. Le. (2020). A2QI: An Approach for Air Pollution Estimation in MediaEval 2020. Working Notes Proceedings of the MediaEval 2020 Workshop.
  • Trung-Quan Nguyen, L. T. T. N., Dang-Hieu Nguyen. (2020). Personal Air Quality Index Prediction Using Inverse Distance Weighting Method. Working Notes Proceedings of the MediaEval 2020 Workshop.
  • Trung-Quan Nguyen, L. T. T. N., Dang-Hieu Nguyen. (2020). Use Visual Features From Surrounding Scenes to Improve Personal Air Quality Data Prediction Performance. Working Notes Proceedings of the MediaEval 2020 Workshop.
  • Insights for Wellbeing: Predicting Personal Air Quality Index Using Regression Approach. (2020). Working Notes Proceedings of the MediaEval 2020 Workshop.
  • Pixel Privacy: Quality Camouflage for Social Images. (2020). Working Notes Proceedings of the MediaEval 2020 Workshop.
  • Zhao, Z. (2020). Fooling Blind Image Quality Assessment by Optimizing a Human-Understandable Color Filter. Working Notes Proceedings of the MediaEval 2020 Workshop.
  • MediaEval 2020: Maintaining Human-Imperceptibility of Image Adversarial Attack by Using Human-Aware Sensitivity Map. (2020). Working Notes Proceedings of the MediaEval 2020 Workshop.
  • HCMUS at Pixel Privacy 2020: Quality Camouflage with Back Propagation and Image Enhancement. (2020). Working Notes Proceedings of the MediaEval 2020 Workshop.
  • Benoit Bonnet, P. B., Teddy Furon. (2020). Fooling an Automatic Image Quality Estimator. Working Notes Proceedings of the MediaEval 2020 Workshop.
  • Laura Cabrera-Quiros, H. H., Jose Vargas-Quirós. (2020). No-Audio Multimodal Speech Detection Task at MediaEval 2020. Working Notes Proceedings of the MediaEval 2020 Workshop.
  • Xinsheng Wang, O. S., Jihua Zhu. (2020). Multimodal Fusion of Body Movement Signals for No-audio Speech Detection. Working Notes Proceedings of the MediaEval 2020 Workshop.
  • Benjamin Kille, Ö. Ö., Andreas Lommatzsch. (2020). News Images in MediaEval 2020. Working Notes Proceedings of the MediaEval 2020 Workshop.
  • HCMUS at MediaEval 2020: Image-Text Fusion for Automatic News-Images Re-Matching. (2020). Working Notes Proceedings of the MediaEval 2020 Workshop.
  • Zhang, T., Wang, D., Chen, H., Zeng, Z., Guo, W., Miao, C., & Cui, L. (2020). BDANN: BERT-based domain adaptation neural network for multi-modal fake news detection. 2020 International Joint Conference on Neural Networks (IJCNN), 1–8.
  • Giachanou, A., Zhang, G., & Rosso, P. (2020). Multimodal fake news detection with textual, visual and semantic information. International Conference on Text, Speech, and Dialogue, 30–38.
  • Tanwar, V., & Sharma, K. (2020). Multi-Model Fake News Detection based on Concatenation of Visual Latent Features. 2020 International Conference on Communication and Signal Processing (ICCSP), 1344–1348.
  • Ou, Y., Chen, Z., & Wu, F. (2020). Multimodal local-global attention network for affective video content analysis. IEEE Transactions on Circuits and Systems for Video Technology, 31(5), 1901–1914.
  • Rambour, C., Audebert, N., Koeniguer, E., Le Saux, B., Crucianu, M., & Datcu, M. (2020). Flood detection in time series of optical and sar images. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 43, 1343–1346.
  • Bouhlel, N., Feki, G., & Amar, C. B. (2020). Hypergraph-based image search reranking with elastic net regularized regression. Multimedia Tools and Applications, 79(41), 30257–30280.
  • Astefanoaei, M., & Collignon, N. (2020). Hyperbolic Embeddings for Music Taxonomy. Proceedings of the 1st Workshop on NLP for Music and Audio (NLP4MusA), 38–42.
  • Armitage, J., Kacupaj, E., Tahmasebzadeh, G., Maleshkova, M., Ewerth, R., & Lehmann, J. (2020). Mlm: A benchmark dataset for multitask learning with multiple languages and modalities. Proceedings of the 29th ACM International Conference on Information & Knowledge Management, 2967–2974.
  • Rana, D. P., Bawkar, S., Jain, M., Bothra, S., & Baldaniya, S. (2020). Image Based Fake Tweet Retrieval (IBFTR). 2020 International Conference for Emerging Technology (INCET), 1–8.
  • Koutini, K., Eghbal-Zadeh, H., Haunschmid, V., Primus, P., Chowdhury, S., & Widmer, G. (2020). Receptive-field regularized CNNs for music classification and tagging. ArXiv Preprint ArXiv:2007.13503.
  • Gao, Z., Qiu, L., Qi, P., & Sun, Y. (2020). A Novel Music Emotion Recognition Model for Scratch-generated Music. 2020 International Wireless Communications and Mobile Computing (IWCMC), 1794–1799.
  • Patel, S. (2020). Precise Image Exploration With Cluster Analysis [PhD thesis].
  • Deekshitha, G., & Mary, L. (2020). Multilingual spoken term detection: a review. International Journal of Speech Technology, 23(3), 653–667.
  • Fadel, S. G., & Torres, R. da S. (2020). Neural relational inference for disaster multimedia retrieval. Multimedia Tools and Applications, 79(35), 26735–26746.
  • Tahmasebzadeh, G., Hakimov, S., Müller-Budack, E., & Ewerth, R. (2020). A Feature Analysis for Multimodal News Retrieval. ArXiv Preprint ArXiv:2007.06390.
  • Gammulle, H., Denman, S., Sridharan, S., & Fookes, C. (2020). Two-stream deep feature modelling for automated video endoscopy data analysis. International Conference on Medical Image Computing and Computer-Assisted Intervention, 742–751.
  • Pereira, J., Monteiro, J., Silva, J., Estima, J., & Martins, B. (2020). Assessing flood severity from crowdsourced social media photos with deep neural networks. Multimedia Tools and Applications, 79(35), 26197–26223.
  • Osailan, S. (2020). Topic Modeling Location-Based Social Media Applications [PhD thesis]. The Claremont Graduate University.
  • Feng, Y., Brenner, C., & Sester, M. (2020). Flood severity mapping from Volunteered Geographic Information by interpreting water level from images containing people: A case study of Hurricane Harvey. ISPRS Journal of Photogrammetry and Remote Sensing, 169, 301–319.
  • Zhu, Y., Chen, Z., & Wu, F. (2020). Affective Video Content Analysis via Multimodal Deep Quality Embedding Network. IEEE Transactions on Affective Computing.
  • Gu, C., Wu, X., & Wang, S. (2020). Violent Video Detection Based on Semantic Correspondence. IEEE Access, 8, 85958–85967.
  • Maseri, A. N., Norman, A. A., Eke, C. I., Ahmad, A., & Molok, N. N. A. (2020). Socio-Technical Mitigation Effort to Combat Cyber Propaganda: A Systematic Literature Mapping. IEEE Access, 8, 92929–92944.
  • Quan, K.-A. C., Nguyen, V.-T., Nguyen, T.-C., Nguyen, T. V., & Tran, M.-T. (2020). Flood level prediction via human pose estimation from social media images. Proceedings of the 2020 International Conference on Multimedia Retrieval, 479–485.
  • Khan, O. S. (2020). An Interactive Learning System for Large-Scale Multimedia Analytics. Proceedings of the 2020 International Conference on Multimedia Retrieval, 368–372.
  • Tahmasebzadeh, G., Hakimov, S., Müller-Budack, E., & Ewerth, R. (2020). A Feature Analysis for Multimodal News Retrieval. ArXiv Preprint ArXiv:2007.06390.
  • Sanchez-Matilla, R., Li, C. Y., Shamsabadi, A. S., Mazzon, R., & Cavallaro, A. (2020). Exploiting vulnerabilities of deep neural networks for privacy protection. IEEE Transactions on Multimedia, 22(7), 1862–1873.
  • Schwarz, S., Theóphilo, A., & Rocha, A. (2020). EMET: Embeddings from Multilingual-Encoder Transformer for Fake News Detection. ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2777–2781.
  • Peixoto, B., Lavi, B., Bestagini, P., Dias, Z., & Rocha, A. (2020). Multimodal Violence Detection in Videos. ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2957–2961.
  • Ştefan, L.-D., Constantin, M. G., & Ionescu, B. (2020). System Fusion with Deep Ensembles. Proceedings of the 2020 International Conference on Multimedia Retrieval, 256–260.
  • Chandra, Y., Tag, B., Peiris, R. L., & Minamizawa, K. (2020). Preliminary Investigation of Across-Body Vibrotactile Pattern for the Design of Affective Furniture. 2020 IEEE Haptics Symposium (HAPTICS), 671–676.
  • Shamsabadi, A. S., Oh, C., & Cavallaro, A. (2020). EdgeFool: An Adversarial Image Enhancement Filter. ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 1898–1902.
  • Martin, P.-E., Benois-Pineau, J., Péteri, R., & Morlier, J. (2020). Fine grained sport action recognition with Twin spatio-temporal convolutional neural networks. Multimedia Tools and Applications, 79(27), 20429–20447.
  • Russo, M., Kraljević, L., Stella, M., & Sikora, M. (2020). Cochleogram-based approach for detecting perceived emotions in music. Information Processing & Management, 57(5), 102270.
  • Ionescu, B., Rohm, M., Boteanu, B., Gı̂nscą Alexandru Lucian, Lupu, M., & Mueller, H. (2020). Benchmarking Image Retrieval Diversification Techniques for Social Media. IEEE Transactions on Multimedia.
  • Constantin, M. G., Stefan, L. D., Ionescu, B., Demarty, C.-H., Sjoberg, M., Schedl, M., & Gravier, G. (2020). Affect in multimedia: Benchmarking violent scenes detection. IEEE Transactions on Affective Computing.
  • Du, P., Li, X., & Gao, Y. (2020). Dynamic Music emotion recognition based on CNN-BiLSTM. 2020 IEEE 5th Information Technology and Mechatronics Engineering Conference (ITOEC), 1372–1376.
  • Bouhlel, N., Feki, G., & Amar, C. B. (2020). Visual Re-Ranking via Adaptive Collaborative Hypergraph Learning for Image Retrieval. European Conference on Information Retrieval, 511–526.
  • Goynuk, B., & Altingovde, I. S. (2020). Supervised learning methods for diversification of image search results. European Conference on Information Retrieval, 158–165.
  • Formal, T., Clinchant, S., Renders, J.-M., Lee, S., & Cho, G. H. (2020). Learning to Rank Images with Cross-Modal Graph Convolutions. European Conference on Information Retrieval, 589–604.
  • Medina, Y. O., Beltrán, J. R., & Baldassarri, S. (2020). Emotional classification of music using neural networks with the MediaEval dataset. Personal and Ubiquitous Computing, 1–13.
  • Qian, X., Wu, Y., Li, M., Ren, Y., Jiang, S., & Li, Z. (2020). Last: Location-appearance-semantic-temporal clustering based POI summarization. IEEE Transactions on Multimedia.
  • Atto, A. M., Benoit, A., & Lambert, P. (2020). Timed-image based deep learning for action recognition in video sequences. Pattern Recognition, 104, 107353.
  • Sorussa, K., Choksuriwong, A., & Karnjanadecha, M. (2020). Emotion Classification System for Digital Music with a Cascaded Technique. ECTI Transactions on Computer and Information Technology (ECTI-CIT), 14(1), 53–66.
  • Zhou, H., Yin, H., Zheng, H., & Li, Y. (2020). A survey on multi-modal social event detection. Knowledge-Based Systems, 195, 105695.
  • Cao, J., Qi, P., Sheng, Q., Yang, T., Guo, J., & Li, J. (2020). Exploring the role of visual content in fake news detection. Disinformation, Misinformation, and Fake News in Social Media, 141–161.
  • Jain, P., Schoen-Phelan, B., & Ross, R. (2020). Automatic flood detection in SentineI-2 images using deep convolutional neural networks. Proceedings of the 35th Annual ACM Symposium on Applied Computing, 617–623.
  • Schaible, J., Breuer, T., Tavakolpoursaleh, N., Müller, B., Wolff, B., & Schaer, P. (2020). Evaluation Infrastructures for Academic Shared Tasks. Datenbank-Spektrum, 1–8.
  • Kang, S. K., Hwang, J., & Yu, H. (2020). Multi-modal component embedding for fake news detection. 2020 14th International Conference on Ubiquitous Information Management and Communication (IMCOM), 1–6.
  • Xie, B., Kim, J. C., & Park, C. H. (2020). Musical emotion recognition with spectral feature extraction based on a sinusoidal model with model-based and deep-learning approaches. Applied Sciences, 10(3), 902.
  • Cheuk, K. W., Luo, Y.-J., Balamurali, B. T., Roig, G., & Herremans, D. (2020). Regression-based music emotion prediction using triplet neural networks. 2020 International Joint Conference on Neural Networks (IJCNN), 1–7.
  • Bouhlel, N., Feki, G., Ammar, A. B., & Amar, C. B. (2020). Hypergraph learning with collaborative representation for image search reranking. International Journal of Multimedia Information Retrieval, 1–10.
  • Lopez-Otero, P., Parapar, J., & Barreiro, A. (2020). Statistical language models for query-by-example spoken document retrieval. Multimedia Tools and Applications, 79(11), 7927–7949.
  • Guo, X., Zhong, W., Ye, L., Fang, L., Heng, Y., & Zhang, Q. (2020). Global Affective Video Content Regression Based on Complementary Audio-Visual Features. International Conference on Multimedia Modeling, 540–550.
  • Borgli, H., Thambawita, V., Smedsrud, P. H., Hicks, S., Jha, D., Eskeland, S. L., Randel, K. R., Pogorelov, K., Lux, M., Nguyen, D. T. D., & others. (2020). HyperKvasir, a comprehensive multi-class image and video dataset for gastrointestinal endoscopy. Scientific Data, 7(1), 1–14.
  • Shamsabadi, A. S., Oh, C., & Cavallaro, A. (2020). Edgefool: an Adversarial Image Enhancement Filter. ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 1898–1902.
  • Jha, D., Smedsrud, P. H., Riegler, M. A., Halvorsen, P., de Lange, T., Johansen, D., & Johansen, H. D. (2020). Kvasir-seg: A segmented polyp dataset. International Conference on Multimedia Modeling, 451–462.
  • Ram, D., Miculicich, L., & Bourlard, H. (2020). Neural network based end-to-end query by example spoken term detection. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 28, 1416–1427.
  • Shamsabadi, A. S., Sanchez-Matilla, R., & Cavallaro, A. (2020). Colorfool: Semantic adversarial colorization. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 1151–1160.
  • Ali, A., Senan, N., Yanto, I. T. R., & Lashari, S. A. (2019). Classification Performance of Violence Content by Deep Neural Network with Monarch Butterfly Optimization. International Journal of Advanced Computer Science and Applications, 10(12).
  • May, L., & Casey, M. (2019). Familiar Feelings: Listener-Rated Familiarity in Music Emotion Recognition. Joint European Conference on Machine Learning and Knowledge Discovery in Databases, 446–453.
  • Yang, Z., Li, Q., Wenyin, L., & Lv, J. (2019). Shared Multi-view Data Representation for Multi-domain Event Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence.
  • Pereira, J., Monteiro, J., Estima, J., & Martins, B. (2019). Assessing flood severity from georeferenced photos. Proceedings of the 13th Workshop on Geographic Information Retrieval, 1–10.
  • GÖYNÜK, B. (2019). Supervised Learning for Image Search Result Diversification [PhD thesis]. Middle East Technical University.
  • Sandberg, M. A. (2019). Music and Sport: An Explorative Study using Unsupervised Machine Learning [Master's thesis].
  • mo Yang, Y. (2019). Short-time Emotion Tracker Using a Convolutional Autoencoder. ECE Department at University of Rochester.
  • Jony, R. I., Woodley, A., & Perrin, D. (2019). Flood Detection in Social Media Images using Visual Features and Metadata. 2019 Digital Image Computing: Techniques and Applications (DICTA), 1–8.
  • Liu, H., Fang, Y., & Huang, Q. (2019). Music Emotion Recognition Using a Variant of Recurrent Neural Network. 2018 International Conference on Mathematics, Modeling, Simulation and Statistics Application (MMSSA 2018).
  • Fukayama, S., & Goto, M. (2019). System, method, and computer program for estimation of target value. In US Patent App. 16/070,144.
  • Guo, J., Song, B., Zhang, P., Ma, M., & Luo, W. (2019). Affective video content analysis based on multimodal data fusion in heterogeneous networks. Information Fusion, 51, 224–232.
  • Muszynski, M., Tian, L., Lai, C., Moore, J., Kostoulas, T., Lombardo, P., Pun, T., & Chanel, G. (2019). Recognizing Induced Emotions of Movie Audiences From Multimodal Information. IEEE Transactions on Affective Computing.
  • Gialampoukidis, I., Chatzilari, E., Nikolopoulos, S., Vrochidis, S., & Kompatsiaris, I. (2019). Multimodal Fusion of Big Multimedia Data. Big Data Analytics for Large-Scale Multimedia Search, 121.
  • Larson, M., Choi, J., Slokom, M., Erkin, Z., Friedland, G., & de Vries, A. P. (2019). Privacy and Audiovisual Content: Protecting Users as Big Multimedia Data Grows Bigger. Big Data Analytics for Large-Scale Multimedia Search, 183.
  • Bischke, B., Borth, D., & Dengel, A. (2019). Large-Scale Social Multimedia Analysis. Big Data Analytics for Large-Scale Multimedia Search, 157.
  • Khattar, D. (2019). Neural Approaches Towards Computational Journalism [PhD thesis]. In PhD Thesis. International Institute of Information Technology Hyderabad.
  • Madhavi, M. C., & Patil, H. A. (2019). Vocal Tract Length Normalization using a Gaussian mixture model framework for query-by-example spoken term detection. Computer Speech & Language, 58, 175–202.
  • Moumtzidou, A., Bakratsas, M., Andreadis, S., Gialampoukidis, I., Vrochidis, S., & Kompatsiaris, I. (2019). Road passability estimation using deep neural networks and sattelite image patches.
  • Li, C. Y., Shamsabadi, A. S., Sanchez-Matilla, R., Mazzon, R., & Cavallaro, A. (2019). Scene privacy protection. ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2502–2506.
  • Engilberge, M., Chevallier, L., Pérez, P., & Cord, M. (2019). SoDeep: a Sorting Deep net to learn ranking loss surrogates. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 10792–10801.
  • Ibrahim, Z. A. A., Haidar, S., & Sbeity, I. (2019). Large-scale Text-based Video Classification using Contextual Features. European Journal of Electrical Engineering and Computer Science, 3(2).
  • Lago, F., Phan, Q. T., & Boato, G. (2019). Visual and Textual Analysis for Image Trustworthiness Assessment within Online News. Security and Communication Networks, 2019.
  • Peixoto, B., Lavi, B., Martin, J. P. P., Avila, S., Dias, Z., & Rocha, A. (2019). Toward Subjective Violence Detection in Videos. ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 8276–8280.
  • Wang, S., Wang, C., Chen, T., Wang, Y., Shu, Y., & Ji, Q. (2019). Video Affective Content Analysis by Exploring Domain Knowledge. IEEE Transactions on Affective Computing.
  • Khattar, D., Goud, J. S., Gupta, M., & Varma, V. (2019). MVAE: Multimodal Variational Autoencoder for Fake News Detection. The World Wide Web Conference, 2915–2921.
  • Yuan, B., & Gao, X. (2019). Diversified textual features based image retrieval. Neurocomputing, 357, 116–124.
  • Benavent, X., Castellanos, A., de Ves, E., Garcı́a-Serrano Ana, & Cigarrán, J. (2019). FCA-based knowledge representation and local generalized linear models to address relevance and diversity in diverse social images. Future Generation Computer Systems, 100, 250–265.
  • Lux, M., Halvorsen, P., Dang-Nguyen, D.-T., Stensland, H., Kesavulu, M., Potthast, M., & Riegler, M. (2019). Summarizing E-Sports Matches and Tournaments. Workshop on Immersive Mixed and Virtual Environment Systems, Amherst, MA, USA.
  • Dong, Y., Yang, X., Zhao, X., & Li, J. (2019). Bidirectional Convolutional Recurrent Sparse Network (BCRSN): An Efficient Model for Music Emotion Recognition. IEEE Transactions on Multimedia.
  • Potthast, M., Gollub, T., Wiegmann, M., & Stein, B. (2019). TIRA Integrated Research Architecture. Information Retrieval Evaluation in a Changing World-Lessons Learned From, 20.
  • Dourado, I. C., Tabbone, S., & da Silva Torres, R. (2019). Event Prediction Based on Unsupervised Graph-Based Rank-Fusion Models. International Workshop on Graph-Based Representations in Pattern Recognition, 88–98.
  • Orjesek, R., Jarina, R., Chmulik, M., & Kuba, M. (2019). DNN Based Music Emotion Recognition from Raw Audio Signal. 2019 29th International Conference Radioelektronika (RADIOELEKTRONIKA), 1–4.
  • Wu, Z., Zhou, K., Liu, Y., Zhang, M., & Ma, S. (2019). Does Diversity Affect User Satisfaction in Image Search. ACM Transactions on Information Systems (TOIS), 37(3), 35.
  • Saravi, S., Kalawsky, R., Joannou, D., Rivas-Casado, M., Fu, G., & Meng, F. (2019). Use of artificial intelligence to improve resilience and preparedness against adverse flood events. Water, 11(5), 973.
  • Dourado, I. C., Tabbone, S., & da Silva Torres, R. (2019). Event Prediction Based on Unsupervised Graph-Based Rank-Fusion Models. International Workshop on Graph-Based Representations in Pattern Recognition, 88–98.
  • Lux, M., Halvorsen, P., Dang-Nguyen, D.-T., Stensland, H., Kesavulu, M., Potthast, M., & Riegler, M. (2019). Summarizing E-sports matches and tournaments: the example of counter-strike: global offensive. Proceedings of the 11th ACM Workshop on Immersive Mixed and Virtual Environment Systems, 13–18.
  • Ammar, S. M., Anjum, M., Rounak, T., Islam, M., Islam, T., & others. (2019). Using deep learning algorithms to detect violent activities [PhD thesis]. In PhD Thesis. BRAC University.
  • Ram, D., Miculicich, L., & Bourlard, H. (2019). Multilingual Bottleneck Features for Query by Example Spoken Term Detection. ArXiv Preprint ArXiv:1907.00443.
  • Abebe, M. A., Tekli, J., Getahun, F., Chbeir, R., & Tekli, G. (2019). Generic metadata representation framework for social-based event detection, description, and linkage. Knowledge-Based Systems.
  • Cogan, T., Cogan, M., & Tamil, L. (2019). MAPGI: Accurate identification of anatomical landmarks and diseased tissue in gastrointestinal tract using deep learning. Computers in Biology and Medicine, 111, 103351.
  • Tejedor, J., Toledano, D. T., Lopez-Otero, P., Docio-Fernandez, L., Peñagarikano, M., Rodriguez-Fuentes, L. J., & Moreno-Sandoval, A. (2019). Search on speech from spoken queries: the Multi-domain International ALBAYZIN 2018 Query-by-Example Spoken Term Detection Evaluation. EURASIP Journal on Audio, Speech, and Music Processing, 2019(1), 13.
  • Li, B., Chen, Z., Li, S., & Zheng, W.-S. (2019). Affective Video Content Analyses by Using Cross-Modal Embedding Learning Features. 2019 IEEE International Conference on Multimedia and Expo (ICME), 844–849.
  • Kirkerød, M. (2019). Unsupervised preprocessing of medical imaging data with generative adversarial networks [PhD thesis]. In Master Thesis.
  • Lommatzsch, A., Kille, B., Styp-Rekowski, K., Karl, M., & Pommering, J. (2019). A Framework for Analyzing News Images and Building Multimedia-Based Recommender. International Conference on Innovations for Community Services, 184–201.
  • Epure, E. V., Khlif, A., & Hennequin, R. (2019). Leveraging Knowledge Bases And Parallel Annotations For Music Genre Translation. ArXiv Preprint ArXiv:1907.08698.
  • Vishwakarma, D. K., Varshney, D., & Yadav, A. (2019). Detection and veracity analysis of fake news via scrapping and authenticating the web search. Cognitive Systems Research, 58, 217–229.
  • Chmulik, M., Jarina, R., Kuba, M., & Lieskovska, E. (2019). Continuous Music Emotion Recognition Using Selected Audio Features. 2019 42nd International Conference on Telecommunications and Signal Processing (TSP), 589–592.
  • Gamage, C., Wijesinghe, I., Chitraranjan, C., & Perera, I. (2019). GI-Net: anomalies classification in gastrointestinal tract through endoscopic imagery with deep learning. 2019 Moratuwa Engineering Research Conference (MERCon), 66–71.
  • Wang, S., Hao, L., & Ji, Q. (2019). Knowledge-Augmented Multimodal Deep Regression Bayesian Networks for Emotion Video Tagging. IEEE Transactions on Multimedia, 22(4), 1084–1097.
  • Zhang, J., Zhao, Y., Cai, L., Tu, C., & Wei, W. (2019). Video Affective Effects Prediction with Multi-modal Fusion and Shot-Long Temporal Context. ArXiv Preprint ArXiv:1909.01763.
  • Le, D. H. N. (2019). Multimodal person recognition in audio-visual streams. EPFL.
  • Singhal, S., Shah, R. R., Chakraborty, T., Kumaraguru, P., & Satoh, S. (2019). SpotFake: A Multi-modal Framework for Fake News Detection. 2019 IEEE Fifth International Conference on Multimedia Big Data (BigMM), 39–47.
  • Yusuf, B., Gök, A., Gündogdu, B., Kose, O. D., & Saraclar, M. (2019). Temporally-Aware Acoustic Unit Discovery for Zerospeech 2019 Challenge. INTERSPEECH, 1098–1102.
  • Sarker, C., Mejias, L., Maire, F., & Woodley, A. (2019). Evaluation of the impact of image spatial resolution in designing a context-based fully convolution neural networks for flood mapping. 2019 Digital Image Computing: Techniques and Applications (DICTA), 1–8.
  • Quirós J Garcı́a, Baldassarri, S., Beltrán, J. R., Guiu, A., & Álvarez, P. (2019). An Automatic Emotion Recognition System for Annotating Spotify’s Songs. OTM Confederated International Conferences" On the Move to Meaningful Internet Systems", 345–362.
  • Sun, Q., Wang, L., Li, M., Zhang, L., & Yang, Y. (2019). A unified framework of predicting binary interestingness of images based on discriminant correlation analysis and multiple kernel learning. ArXiv Preprint ArXiv:1910.05996.
  • Zhu, Y., Chen, Z., & Wu, F. (2019). Multimodal deep denoise framework for affective video content analysis. Proceedings of the 27th ACM International Conference on Multimedia, 130–138.
  • Fonseca, G. B., Patrocı́nio Jr Zenilton KG, Gravier, G., & Guimarães, S. J. F. (2019). Multimodal person discovery using label propagation over speaking faces graphs. Anais Estendidos Da XXXII Conference on Graphics, Patterns and Images, 126–132.
  • Hoang, T.-H., Nguyen, H.-D., Nguyen, V.-A., Nguyen, T.-A., Nguyen, V.-T., & Tran, M.-T. (2019). Enhancing Endoscopic Image Classification with Symptom Localization and Data Augmentation. Proceedings of the 27th ACM International Conference on Multimedia, 2578–2582.
  • Jha, D., Smedsrud, P. H., Riegler, M. A., Johansen, D., De Lange, T., Halvorsen, P., & Johansen, H. D. (2019). Resunet++: An advanced architecture for medical image segmentation. 2019 IEEE International Symposium on Multimedia (ISM), 225–2255.
  • Aslan, F., & Ekenel, H. K. (2019). Emotion Prediction in Movies Using Visual Features & Genre Information. 2019 4th International Conference on Computer Science and Engineering (UBMK), 1–5.
  • Lux, M., Riegler, M., Halvorsen, P., Dang-Nguyen, D.-T., & Potthast, M. (2019). Challenges for Multimedia Research in E-Sports Using Counter-Strike. In Savegame (pp. 197–206). Springer.
  • Pereira, J., Monteiro, J., Estima, J., & Martins, B. (2019). Assessing flood severity from georeferenced photos. Proceedings of the 13th Workshop on Geographic Information Retrieval, 1–10.
  • Yi, Y., Wang, H., & Li, Q. (2019). Affective video content analysis with adaptive fusion recurrent network. IEEE Transactions on Multimedia, 22(9), 2454–2466.
  • Bischke, B., Helber, P., Brugman, S., Basar, E., Zhao, Z., Larson, M., & Pogorelov, K. (2019). The Multimedia Satellite Task at MediaEval 2019. MediaEval Working Notes Proceedings.
  • Murtaza, M., Hanif, M., Tahir, M. A., & Rafi, M. (2019). Ensemble and Inference based Methods for Flood Severity Estimation Using Visual Data. MediaEval Working Notes Proceedings.
  • Quan-Chi, K.-A., Nguyen, T.-C., Nguyen, V.-T., & Tran, M.-T. (2019). Flood Event Analysis Base on Pose Estimation and Water-Related Scene Recognition. MediaEval Working Notes Proceedings.
  • Andreadis, S., Bakratsas, M., Giannakeris, P., Moumtzidou, A., Gialampoukidis, I., Vrochidis, S., & Kompatsiaris, I. (2019). Multimedia Analysis Techniques for Flood Detection Using Images, Articles and Satellite Imagery. MediaEval Working Notes Proceedings.
  • Zaffaroni, M., Fuentes, L. L., Farasin, A., Garza, P., & Skinnemoen, H. (2019). AI-Based Flood Event Understanding and Quantifying Using Online Media and Satellite Data. MediaEval Working Notes Proceedings.
  • Bruneau, P., & Tamisier, T. (2019). Transfer Learning and Mixed Input Deep Neural Networks for Estimating Flood Severity in News Content. MediaEval Working Notes Proceedings.
  • Ganapathy, H., Bandlamudi, G., L, Y., J, B., & Mirnalinee, T. T. (2019). Deep Learning Models for Estimation of Flood Severity Using Multimodal and Satellite Images. MediaEval Working Notes Proceedings.
  • Ahmad, K., Pogorelov, K., Ullah, M., Riegler, M., Conci, N., Langguth, J., & Al-Fuqaha, A. (2019). Multi-Modal Machine Learning for Floods Detection in News, Social Media and Satellite Sequences. MediaEval Working Notes Proceedings.
  • Feng, Y., Tang, S., Cheng, H., & Sester, M. (2019). Flood Level Estimation from News Articles and Flood Detection from Satellite Image Sequences. MediaEval Working Notes Proceedings.
  • Bînă, D., Vlad, G.-A., Onose, C., & Cercel, D.-C. (2019). Flood Severity Estimation in News Articles Using Deep Learning Approaches. MediaEval Working Notes Proceedings.
  • Strebl, J., Slijepcevic, D., Kirchknopf, A., Sakeena, M., Seidl, M., & Zeppelzauer, M. (2019). Estimation of Flood Level from Social Media Images. MediaEval Working Notes Proceedings.
  • Jain, P., Schoen-Phelan, B., & Ross, R. (2019). MediaEval2019: Flood Detection in Time Sequence Satellite Images. MediaEval Working Notes Proceedings.
  • Bischke, B., Brugman, S., & Helber, P. (2019). Flood Severity Estimation from Online News Images and Multi-Temporal Satellite Images Using Deep Neural Networks. MediaEval Working Notes Proceedings.
  • Constantin, M. G., Ionescu, B., Demarty, C.-H., Duong, N. Q. K., Alameda-Pineda, X., & Sjöberg, M. (2019). The Predicting Media Memorability Task at MediaEval 2019. MediaEval Working Notes Proceedings.
  • Azcona, D., Moreu, E., Hu, F., Ward, T. E., & Smeaton, A. F. (2019). Predicting Media Memorability Using Ensemble Models. MediaEval Working Notes Proceedings.
  • Tran, L.-V., Huynh, V.-L., & Tran, M.-T. (2019). Predicting Media Memorability Using Deep Features with Attention and Recurrent Network. MediaEval Working Notes Proceedings.
  • Reboud, A., Harrando, I., Laaksonen, J., Francis, D., Troncy, R., & Mantecón, H. L. (2019). Combining Textual and Visual Modeling for Predicting Media Memorability. MediaEval Working Notes Proceedings.
  • dos Santos, S. F., & Almeida, J. (2019). GIBIS at MediaEval 2019: Predicting Media Memorability Task. MediaEval Working Notes Proceedings.
  • Viola, A., & Yoon, S. (2019). A Hybrid Approach for Video Memorability Prediction. MediaEval Working Notes Proceedings.
  • Wang, S., Yao, L., Chen, J., & Jin, Q. (2019). RUC at MediaEval 2019: Video Memorability Prediction Based on Visual Textual and Concept Related Features. MediaEval Working Notes Proceedings.
  • Leyva, R., Doctor, F., de Herrera, A. G. S., & Sahab, S. (2019). Multimodal Deep Features Fusion for Video Memorability Prediction. MediaEval Working Notes Proceedings.
  • Constantin, M. G., Kang, C., Dinu, G., Dufaux, F., Valenzise, G., & Ionescu, B. (2019). Using Aesthetics and Action Recognition-Based Networks for the Prediction of Media Memorability. MediaEval Working Notes Proceedings.
  • Yi, S., Wang, X., & Yamasaki, T. (2019). Emotion and Theme Recognition of Music Using Convolutional Neural Networks. MediaEval Working Notes Proceedings.
  • Amiriparian, S., Gerczuk, M., Coutinho, E., Baird, A., Ottl, S., Milling, M., & Schuller, B. (2019). Emotion and Themes Recognition in Music Utilising Convolutional and Recurrent Neural Networks. MediaEval Working Notes Proceedings.
  • Hung, H.-T., Chen, Y.-H., Mayerl, M., Vötter, M., Zangerle, E., & Yang, Y.-H. (2019). MediaEval 2019 Emotion and Theme Recognition task: A VQ-VAE Based Approach. MediaEval Working Notes Proceedings.
  • Bogdanov, D., Porter, A., Tovstogan, P., & Won, M. (2019). MediaEval 2019: Emotion and Theme Recognition in Music Using Jamendo. MediaEval Working Notes Proceedings.
  • Mayerl, M., Vötter, M., Hung, H.-T., Chen, B., Yang, Y.-H., & Zangerle, E. (2019). Recognizing Song Mood and Theme Using Convolutional Recurrent Neural Networks. MediaEval Working Notes Proceedings.
  • Koutini, K., Chowdhury, S., Haunschmid, V., Eghbal-Zadeh, H., & Widmer, G. (2019). Emotion and Theme Recognition in Music with Frequency-Aware RF-Regularized CNNs. MediaEval Working Notes Proceedings.
  • Sukhavasi, M., & Adapa, S. (2019). Music Theme Recognition Using CNN and Self-Attention. MediaEval Working Notes Proceedings.
  • Hicks, S., Halvorsen, P., Haugen, T. B., Andersen, J. M., Witczak, O., Pogorelov, K., Hammer, H. L., Dang-Nguyen, D.-T., Lux, M., & Riegler, M. (2019). Medico Multimedia Task at MediaEval 2019. MediaEval Working Notes Proceedings.
  • Hicks, S., Halvorsen, P., Haugen, T. B., Andersen, J. M., Witczak, O., Pogorelov, K., Hammer, H. L., Dang-Nguyen, D.-T., Lux, M., & Riegler, M. (2019). Predicting Sperm Motility and Morphology Using Deep Learning and Handcrafted Features. MediaEval Working Notes Proceedings.
  • Hicks, S., Haugen, T. B., Halvorsen, P., & Riegler, M. (2019). Using Deep Learning to Predict Motility and Morphology of Human Sperm. MediaEval Working Notes Proceedings.
  • Thambawita, V., Halvorsen, P., Hammer, H., Riegler, M., & Haugen, T. B. (2019). Stacked Dense Optical Flows and Dropout Layers to Predict Sperm Motility and Morphology. MediaEval Working Notes Proceedings.
  • Thambawita, V., Halvorsen, P., Hammer, H., Riegler, M., & Haugen, T. B. (2019). Extracting Temporal Features into a Spatial Domain Using Autoencoders for Sperm Video Analysis. MediaEval Working Notes Proceedings.
  • Rosenblad, J.-M., Hicks, S., Stensland, H. K., Haugen, T. B., Halvorsen, P., & Riegler, M. (2019). Using 2D and 3D Convolutional Neural Networks to Predict Semen Quality. MediaEval Working Notes Proceedings.
  • Dao, M.-S., Zhao, P., andKoji Zettsu, T. S., Dang-Nguyen, D.-T., Gurrin, C., & Nguyen, N.-T. (2019). Overview of MediaEval 2019: Insights for Wellbeing TaskMultimodal Personal Health Lifelog Data Analysis. MediaEval Working Notes Proceedings.
  • Le, T.-K., Ninh, V.-T., Zhou, L., Dang-Nguyen, D.-T., & Gurrin, C. (2019). DCU Team at the 2019 Insight for Wellbeing Task: Multimodal Personal Health Lifelog Data Analysis. MediaEval Working Notes Proceedings.
  • Le, H.-A., Nguyen-Ho, T.-L., & Tran, M.-T. (2019). HCMUS at Insight for Wellbeing Task 2019: Multimodal Personal Health Lifelog Data Analysis with Inference from Multiple Sources and Attributes. MediaEval Working Notes Proceedings.
  • Huang, Q., Sheng, A., Pang, L., Wei, X., & Jain, R. (2019). Healthism@MediaEval 2019 - Insights for Wellbeing Task: Factors Related to Subjective and Objective Health. MediaEval Working Notes Proceedings.
  • Tan, L. T. N., Nguyen, M.-T., & Nguyen, D.-H. (2019). Predicting Missing Data by Using Multimodal Data Analytics. MediaEval Working Notes Proceedings.
  • Nguyen, D.-H., Nguyen, M.-T., & Tan, L. T. N. (2019). Leveraging Egocentric and Surrounding Environment Data to Adaptively Measure a Personal Air Qality Index. MediaEval Working Notes Proceedings.
  • Liu, Z., Zhao, Z., & Larson, M. (2019). Pixel Privacy 2019: Protecting Sensitive Scene Information in Images. MediaEval Working Notes Proceedings.
  • Linardos, P., Little, S., & McGuinness, K. (2019). MediaEval 2019: Concealed FGSM Perturbations for Privacy Preservation. MediaEval Working Notes Proceedings.
  • Tran, H. V., Pham, T.-T., Ho-Nguyen, H.-T., Nguyen-Hy, H.-L., Nguyen, X.-V., Nguyen-Ho, T.-L., & Tran, M.-T. (2019). HCMUS at Pixel Privacy 2019: Scene Category Protection with Back Propagation and Image Enhancement. MediaEval Working Notes Proceedings.
  • Liu, Z., & Zhao, Z. (2019). Adversarial Photo Frame: Concealing Sensitive Scene Information of Social Images in a User-Acceptable Manner. MediaEval Working Notes Proceedings.
  • Sweere, S., Liu, Z., & Larson, M. (2019). Maintaining Perceptual Faithfulness of Adversarial Image Examples by Leveraging Color Variance. MediaEval Working Notes Proceedings.
  • Sakha, M. B. (2019). Image Enhancement and Adversarial Attack Pipeline for Scene Privacy Protection. MediaEval Working Notes Proceedings.
  • Lux, M., Riegler, M., Dang-Nguyen, D.-T., Pirker, J., Potthast, M., & Halvorsen, P. (2019). GameStory Task at MediaEval 2019. MediaEval Working Notes Proceedings.
  • Ninh, V.-T., Le, T.-K., Dang-Nguyen, D.-T., & Gurrin, C. (2019). Replay Detection and Multi-stream Synchronization in CS:GO Game Streams Using Content-Based Image Retrieval and Image Signature Matching. MediaEval Working Notes Proceedings.
  • Moriya, Y., & Jones, G. J. F. (2019). DCU-ADAPT at MediaEval 2019: GameStory. MediaEval Working Notes Proceedings.
  • Mekul, K. (2019). Automated Replay Detection and Multi-Stream Synchronization. MediaEval Working Notes Proceedings.
  • Gedik, E., Cabrera-Quiros, L., & Hung, H. (2019). No-Audio Multimodal Speech Detection Task at MediaEval 2019. MediaEval Working Notes Proceedings.
  • Giannakeris, P., Vrochidis, S., & Kompatsiaris, I. (2019). Multimodal Fusion of Appearance Features, Optical Flow and Accelerometer Data for Speech Detection. MediaEval Working Notes Proceedings.
  • Vargas, J., & Hung, H. (2019). CNNs and Fisher Vectors for No-Audio Multimodal Speech Detection. MediaEval Working Notes Proceedings.
  • Li, L., Hao, Z., & Sun, B. (2019). Combining Visual and Movement Modalities for No-audio Speech Setection. MediaEval Working Notes Proceedings.
  • Martin, P.-E., Benois-Pineau, J., Mansencal, B., Peteri, R., Mascarilla, L., Calandre, J., & Morlier, J. (2019). Sports Video Annotation: Detection of Strokes in Table Tennis Task for MediaEval 2019. MediaEval Working Notes Proceedings.
  • Sriraman, S., Srinivasan, S., Krishnan, V. K., J, B., & Mirnalinee, T. T. (2019). MediaEval 2019: LRCNs for Stroke Detection in Table Tennis. MediaEval Working Notes Proceedings.
  • Calandre, J., Péteri, R., & Mascarilla, L. (2019). Optical Flow Singularities for Sports Video Annotation: Detection of Strokes in Table Tennis. MediaEval Working Notes Proceedings.
  • Martin, P.-E., Benois-Pineau, J., Mansencal, B., Péteri, R., & Morlier, J. (2019). Siamese Spatio-Temporal Convolutional Neural Network for Stroke Classification in Table Tennis Games. MediaEval Working Notes Proceedings.
  • Moriya, Y., Sanabria, R., Metze, F., & Jones, G. J. F. (2019). MediaEval 2019: Eyes and Ears Together. MediaEval Working Notes Proceedings.
  • Diep, G.-H., Luu, D.-T., Tran-Nguyen, S.-T., & Tran, M.-T. (2019). HCMUS at Eyes and Ears Together 2019: Entity Localization with Guided Word Embedding and Human Pose Estimation Approach. MediaEval Working Notes Proceedings.
  • Moriya, Y., & Jones, G. J. F. (2019). DCU-ADAPT at MediaEval 2019: Eyes and Ears Together. MediaEval Working Notes Proceedings.
  • Deldjoo, Y., Kille, B., Schedl, M., Lommatzsch, A., & Shen, J. (2019). The 2019 Multimedia for Recommender System Task: MovieREC and NewsREEL at MediaEval. MediaEval Working Notes Proceedings.
  • Rahmani, H. A., Deldjoo, Y., & Schedl, M. (2019). A Regression Approach to Movie Rating Prediction Using Multimedia Content and Metadata. MediaEval Working Notes Proceedings.
  • Brugman, S., & Larson, M. (2019). Scene Change Task: Take me to Paris. MediaEval Working Notes Proceedings.
  • Douradoa, I. C., Tabboneb, S., & da Silva Torresc, R. (2019). Multimodal Representation Model based on Graph-Based Rank Fusion. ArXiv Preprint ArXiv:1912.10314.
  • Jony, R. I., Woodley, A., Raj, A., & Perrin, D. (2018). Ensemble Classification Technique for Water Detection in Satellite Images. 2018 Digital Image Computing: Techniques and Applications (DICTA), 1–8.
  • Muszynski, M. (2018). Recognizing film aesthetics, spectators’ affect and aesthetic emotions from multimodal signals [PhD thesis]. In PhD Thesis. University of Geneva.
  • Wang, Y., Ma, F., Jin, Z., Yuan, Y., Xun, G., Jha, K., Su, L., & Gao, J. (2018). Eann: Event adversarial neural networks for multi-modal fake news detection. ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.
  • Boididou, C., Middleton, S. E., Jin, Z., Papadopoulos, S., Dang-Nguyen, D. T., Boato, G., & Kompatsiaris, Y. (2018). Verifying information with multimedia content on twitter. Multimedia Tools and Applications.
  • Cohendet, R., Yadati, K., Duong, N. Q. K., & Demarty, C. H. (2018). Annotating, understanding, and predicting long-term video memorability. ACM International Conference on Multimedia Retrieval.
  • Nogueira, K., Fadel, S. G., Dourado, Í. C., de O Werneck, R., Muñoz, J. A. V., Penatti, O. A. B., Calumby, R. T., Li, L. T., dos Santos, J. A., & da S Torres, R. (2018). Exploiting ConvNet diversity for flooding identification. IEEE Geoscience and Remote Sensing Letters.
  • Boididou, C., Papadopoulos, S., Zampoglou, M., Apostolidis, L., Papadopoulou, O., & Kompatsiaris, Y. (2018). Detection and visualization of misleading content on Twitter. International Journal of Multimedia Information Retrieval.
  • Ram, D., Asaei, A., & Bourlard, H. (2018). Sparse subspace modeling for query by example spoken term detection. IEEE/ACM Transactions on Audio, Speech and Language Processing (TASLP).
  • Deldjoo, Y., Constantin, M. G., Ionescu, B., Schedl, M., & Cremonesi, P. (2018). Mmtf-14k: A multifaceted movie trailer feature dataset for recommendation and retrieval. ACM Multimedia Systems Conference.
  • Squalli-Houssaini, H., Duong, N. Q. K., Gwenaëlle, M., & Demarty, C. H. (2018). Deep learning for predicting image memorability. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
  • Murauer, B., & Specht, G. (2018). Detecting Music Genre Using Extreme Gradient Boosting. Companion of the The Web Conference.
  • Erdélyi, A., Winkler, T., & Rinner, B. (2018). Privacy protection vs. utility in visual data. Multimedia Tools and Applications.
  • Ahmad, K., Sohail, A., Conci, N., & Natale, F. D. (2018). A Comparative study of Global and Deep Features for the analysis of user-generated natural disaster related images. IEEE Image, Video, and Multidimensional Signal Processing Workshop (IVMSP).
  • Ram, D., Miculicich, L., & Bourlard, H. (2018). CNN based query by example spoken term detection. INTERSPEECH.
  • Kirchknopf, A., Slijepcevic, D., Zeppelzauer, M., & Seidl, M. (2018). Detection of road passability from social media and satellite images. MediaEval Working Notes Proceedings.
  • Moumtzidou, A., Giannakeris, P., Andreadis, S., Mavropoulos, A., Meditskos, G., Gialampoukidis, I., Avgerinakis, K., Vrochidis, S., & Kompatsiaris, I. (2018). A multimodal approach in estimating road passability through a flooded area using social media and satellite images. MediaEval Working Notes Proceedings.
  • Lopez-Fuentes, L., Farasin, A., Skinnemoen, H., & Garza, P. (2018). Deep learning models for passability detection in flooded roads. MediaEval Working Notes Proceedings.
  • Madhavi, M. C., & Patil, H. A. (2018). Design of mixture of GMMs for Query-by-Example spoken term detection. Computer Speech and Language.
  • Vavrek, J., Viszlay, P., Lojka, M., Juhár, J., & Pleva, M. (2018). Weighted fast sequential DTW for multilingual audio Query-by-Example retrieval. Journal of Intelligent Information Systems.
  • Lommatzsch, A., & Kille, B. (2018). Baseline Algorithms for Predicting the Interest in News based on Multimedia Data. Proceedings of the MediaEval Workshop.
  • Deldjoo, Y. (2018). Video recommendation by exploiting the multimedia content. PhD Thesis.
  • Larson, M., Liu, Z., Brugman, S. F. B., & Zhao, Z. (2018). Pixel Privacy. Increasing Image Appeal while Blocking Automatic Inference of Sensitive Scene Information. MediaEval Working Notes Proceedings.
  • Ceroni, A. (2018). Personal Photo Management and Preservation. Personal Multimedia Preservation.
  • Singh, S. K., & Rafiei, D. (2018). Strategies for geographical scoping and improving a gazetteer. ACM International Conference on World Wide Web.
  • Liu, Y., Gu, Z., Ko, T. H., & Hua, K. A. (2018). Learning perceptual embeddings with two related tasks for joint predictions of media interestingness and emotions. ACM International Conference on Multimedia Retrieval.
  • Said, N., Pogorelov, K., Ahmad, K., Riegler, M., Ahmad, N., Ostroukhova, O., Halvorsen, P., & Conci, N. (2018). Deep learning approaches for flood classification and flood aftermath detection. MediaEval Working Notes Proceedings.
  • Dao, M. S., Minh, P. Q. N., Kasem, A., & Nazmudeen, N. S. H. (2018). A Context-Aware Late-Fusion Approach for Disaster Image Retrieval from Social Media. International Conference on Multimedia Retrieval.
  • Bracamonte, T., Bustos, B., Poblete, B., & Schreck, T. (2018). Extracting semantic knowledge from web context for multimedia IR: a taxonomy, survey and challenges. Multimedia Tools and Applications.
  • Ben-Ahmed, O., & Huet, B. (2018). Deep Multimodal Features for Movie Genre and Interestingness Prediction. IEEE International Conference on Content-Based Multimedia Indexing (CBMI).
  • Parekh, J., Tibrewal, H., & Parekh, S. (2018). Deep pairwise classification and ranking for predicting media interestingness. ACM International Conference on Multimedia Retrieval.
  • Marquant, G., Demarty, C. H., Chamaret, C., Sirot, J., & Chevallier, L. (2018). Interestingness Prediction and its Application to Immersive Content. IEEE International Conference on Content-Based Multimedia Indexing (CBMI).
  • Maigrot, C., Claveau, V., & Kijak, E. (2018). Fusion-based multimodal detection of hoaxes in social networks. IEEE/WIC/ACM International Conference on Web Intelligence (WI).
  • Serrano, I., Deniz, O., Espinosa-Aranda, J. L., & Bueno, G. (2018). Fight Recognition in Video Using Hough Forests and 2D Convolutional Neural Network. IEEE Transactions on Image Processing.
  • Xue, J., & Eguchi, K. (2018). Supervised nonparametric multimodal topic modeling methods for multi-class video classification. ACM International Conference on Multimedia Retrieval.
  • Xue, J., & Eguchi, K. (2018). Sequential Bayesian nonparametric multimodal topic models for video data analysis. IEICE Transactions on Information and Systems.
  • Zhang, X., Zhao, Z., Zhang, H., Wang, S., & Li, Z. (2018). Unsupervised geographically discriminative feature learning for landmark tagging. Knowledge-Based Systems.
  • Palaiokrassas, G., Voulodimos, A., Litke, A., Papaoikonomou, A., & Varvarigou, T. (2018). A Distance-Dependent Chinese Restaurant Process Based Method for Event Detection on Social Media. Inventions.
  • Brugman, S. F. B., Wysokinski, M., & Larson, M. (2018). Exploring Three Views on Image Enhancement for Pixel Privacy. MediaEval Working Notes Proceedings.
  • Thambawita, V., Jha, D., Riegler, M., Halvorsen, P., Hammer, H. L., Johansen, H. D., & Johansen, D. (2018). The Medico-Task 2018: Disease Detection in the Gastrointestinal Tract using Global Features and Deep Learning. MediaEval Working Notes Proceedings.
  • Ciobanu, A., Lommatzsch, A., & Kille, B. (2018). Predicting the Interest in News based On Image Annotations. MediaEval Working Notes Proceedings.
  • Cohendet, R., Demarty, C. H., Duong, N. Q. K., & Engilberge, M. (2018). VideoMem: Constructing, Analyzing, Predicting Short-term and Long-term Video Memorability. ArXiv Preprint.
  • Rohm, M., Ionescu, B., Gînscă, A. L., Santos, R. L. T., & Müller, H. (2018). Subdiv17: a dataset for investigating subjectivity in the visual diversification of image search results. ACM Multimedia Systems Conference.
  • Oramas, S., Bogdanov, D., & Porter, A. (2018). MediaEval 2018 AcousticBrainz Genre Task: A baseline combining deep feature embeddings across datasets. MediaEval Working Notes Proceedings.
  • Nadeem, S., Tahir, M. A., Naqvi, S. S. A., & Zaid, M. (2018). Ensemble of Texture and Deep Learning Features for Finding Abnormalities in the Gastro-Intestinal Tract. International Conference on Computational Collective Intelligence.
  • Taschwer, M., Primus, M. J., Schoeffmann, K., & Marques, O. (2018). Early and Late Fusion of Classifiers for the MediaEval Medico Task. MediaEval Working Notes Proceedings.
  • Smeaton, A. F., Corrigan, O., Dockree, P., Gurrin, C., Healy, G., Hu, F., McGuinness, K., Mohedano, E., & Ward, T. E. (2018). Dublin’s participation in the predicting media memorability task at MediaEval 2018. MediaEval Working Notes Proceedings.
  • Galuščáková, P. (2018). Information retrieval and navigation in audio-visual archives. PhD Thesis.
  • Cao, J. (2018). Large-scale content management and retrieval for social media. PhD Thesis.
  • Yi, Y., & Wang, H. (2018). Multi-modal learning for affective content analysis in movies. Multimedia Tools and Applications.
  • Zhao, Z., Larson, M. A., & Oostdijk, N. H. J. (2018). Exploiting Local Semantic Concepts for Flooding-related Social Image Classification. MediaEval Working Notes Proceedings.
  • Sarman, S., & Sert, M. (2018). Audio based violent scene classification using ensemble learning. IEEE International Symposium on Digital Forensic and Security (ISDFS).
  • Werneck, R. D. O., Dourado, I. C., Fadel, S. G., Tabbone, S., & Torres, R. S. (2018). Graph-Based Early-Fusion for Flood Detection. IEEE International Conference on Image Processing (ICIP).
  • Cheng, X., Zhang, X., Xu, M., & Zheng, T. F. (2018). MMANN: Multimodal Multilevel Attention Neural Network for Horror Clip Detection. IEEE Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC).
  • Nole, T. J. B. (2018). Improving web multimedia information retrieval using social data. PhD Thesis.
  • Zhang, X., Cheng, X., Xu, M., & Zheng, T. F. (2018). Imbalance Learning-based Framework for Fear Recognition in the MediaEval Emotional Impact of Movies Task. Interspeech.
  • Khokher, M. R. (2018). Audio-visual Video Recognition Through Super Descriptor Tensor Decomposition and Low-rank and Sparse Representation. PhD Thesis.
  • Zou, B., Nurudeen, M., Zhu, C., Zhang, Z., Zhao, R., & Wang, L. (2018). A Neuro-Fuzzy Crime Prediction Model Based on Video Analysis. Chinese Journal of Electronics.
  • Wang, S., Chen, S., Zhao, J., & Jin, Q. (2018). Video Interestingness Prediction Based on Ranking Model. ACM Joint Workshop of the 4th Workshop on Affective Social Multimedia Computing and First Multi-Modal Affective Computing of Large-Scale Multimedia Data.
  • Atto, A. M., Benoît, A., & Lambert, P. (2018). Hilbert Based Video To Timed-Image Filling and Learning To Recognize Visual Violence.
  • Maigrot, C., Kijak, E., & Claveau, V. (2018). Fusion par apprentissage pour la détection de fausses informations dans les réseaux sociaux. Document Numerique.
  • Timar, Y., Karslioglu, N., Kaya, H., & Salah, A. A. (2018). Feature Selection and Multimodal Fusion for Estimating Emotions Evoked by Movie Clips. ACM International Conference on Multimedia Retrieval.
  • Muszynski, M. (2018). Recognizing film aesthetics, spectators’ affect and aesthetic emotions from multimodal signals. PhD Thesis.
  • Hou, C., Wu, X., & Wang, G. (2018). End-to-End Bloody Video Recognition by Audio-Visual Feature Fusion. Chinese Conference on Pattern Recognition and Computer Vision.
  • Nandigam, N. R. (2018). MDRED: Multi-Modal Multi-Task Distributed Recognition for Event Detection. PhD Thesis.
  • Khwileh, A. (2018). Towards effective cross-lingual search of user-generated internet speech. PhD Thesis.
  • Borgli, R. J., Halvorsen, P., Riegler, M., & Stensland, H. K. (2018). Automatic Hyperparameter Optimization in Keras for the MediaEval 2018 Medico Multimedia Task. MediaEval Working Notes Proceedings.
  • Lux, M., Riegler, M., Dang-Nguyen, D. T., Larson, M., Potthast, M., & Halvorsen, P. (2018). Team ORG@ GameStory Task 2018. MediaEval Working Notes Proceedings.
  • Wang, S., Wang, W., Chen, S., & Jin, Q. (2018). RUC at MediaEval 2018: Visual and Textual Features Exploration for Predicting Media Memorability. MediaEval Working Notes Proceedings.
  • Wutti, M. (2018). Automated Killstreak Extraction in CS: GO Tournaments. MediaEval Working Notes Proceedings.
  • Gupta, R., & Motwani, K. (2018). Linear Models for Video Memorability Prediction Using Visual and Semantic Features. MediaEval Working Notes Proceedings.
  • Liu, Y., Gu, Z., & Ko, T. H. (2018). Analyzing Human Behavior in Subspace: Dimensionality Reduction+ Classification. MediaEval Working Notes Proceedings.
  • Cabrera-Quiros, L., Gedik, E., & Hung, H. (2018). Transductive Parameter Transfer, Bags of Dense Trajectories and MILES for No-Audio Multimodal Speech Detection. MediaEval Working Notes Proceedings.
  • Hicks, S. A., Smedsrud, P. H., Halvorsen, P., & Riegler, M. (2018). Deep Learning Based Disease Detection Using Domain Specific Transfer Learning. MediaEval Working Notes Proceedings.
  • Ko, T. H., Gu, Z., & Liu, Y. (2018). Weighted Discriminant Embedding: Discriminant Subspace Learning for Imbalanced Medical Data Classification. MediaEval Working Notes Proceedings.
  • Sun, W., & Zhang, X. (2018). Video Memorability Prediction with Recurrent Neural Networks and Video Titles at the 2018 MediaEval Predicting Media Memorability Task. MediaEval Working Notes Proceedings.
  • Nazary, F., & Deldjoo, Y. (2018). Movie Rating Prediction using Multimedia Content and Modeling as a Classification Problem. MediaEval Working Notes Proceedings.
  • Joshi, T., Sivaprasad, S., Bhat, S., & Pedanekar, N. (2018). Multimodal Approach to Predicting Media Memorability. MediaEval Working Notes Proceedings.
  • Khan, Z., & Tahir, M. A. (2018). Majority voting of Heterogeneous Classifiers for finding abnormalities in the Gastro-Intestinal Tract. MediaEval Working Notes Proceedings.
  • Schreiber, H. (2018). MediaEval 2018 AcousticBrainz Genre Task: A CNN Baseline Relying on Mel-Features. MediaEval Working Notes Proceedings.
  • Dias, D., & Dias, U. (2018). Transfer learning with CNN architectures for classifying gastrointestinal diseases and anatomical landmarks. MediaEval Working Notes Proceedings.
  • Ostroukhova, O., Pogorelov, K., Riegler, M., Dang-Nguyen, D. T., & Halvorsen, P. (2018). Transfer learning with prioritized classification and training dataset equalization for medical objects detection. MediaEval Working Notes Proceedings.
  • Liu, Y., Gu, Z., & Ko, T. H. (2018). Learning Memorability Preserving Subspace for Predicting Media Memorability. MediaEval Working Notes Proceedings.
  • Tran-Van, D. T., Tran, L. V., & Tran, M. T. (2018). Predicting Media Memorability Using Deep Features and Recurrent Network. MediaEval Working Notes Proceedings.
  • Weiss, A., Sang, B., & Yoon, S. (2018). Predicting Memorability via Early Fusion Deep Neural Network. MediaEval Working Notes Proceedings.
  • Savii, R. M., dos Santos, S. F., & Almeida, J. (2018). GIBIS at MediaEval 2018: Predicting Media Memorability Task. MediaEval Working Notes Proceedings.
  • Chaudhry, R., Kilaru, M., & Shekhar, S. (2018). Show and Recall@ MediaEval 2018 ViMemNet: Predicting Video Memorability. MediaEval Working Notes Proceedings.
  • Cohendet, R., Demarty, C. H., & Duong, N. Q. K. (2018). Transfer learning for video memorability prediction. MediaEval Working Notes Proceedings.
  • Ko, T. H., Gu, Z., He, T., & Liu, Y. (2018). Towards Learning Emotional Subspace. MediaEval Working Notes Proceedings.
  • Loughridge, C., & Moseyko, J. (2018). IM-JAIC at MediaEval 2018 Emotional Impact of Movies Task. MediaEval Working Notes Proceedings.
  • Sun, J. J., Liu, T., & Prasad, G. (2018). GLA in MediaEval 2018 Emotional Impact of Movies Task. MediaEval Working Notes Proceedings.
  • Hanif, M., Tahir, M. A., & Rafi, M. (2018). Detection of passable roads using Ensemble of Global and Local. MediaEval Working Notes Proceedings.
  • Lopez-Otero, P., & Docio-Fernandez, L. (2018). Converted Mel-Cepstral Coefficients for Gender Variability Reduction in Query-by-Example Spoken Document Retrieval. Isca-Speech.org.
  • Batziou, E., Michail, E., Avgerinakis, K., Vrochidis, S., Patras, I., & Kompatsiaris, I. (2018). Visual and audio analysis of movies video for emotion detection@ Emotional Impact of Movies task MediaEval 2018. MediaEval Working Notes Proceedings.
  • Dias, D., & Dias, U. (2018). Flood detection from social multimedia and satellite images using ensemble and transfer learning with CNN architectures. MediaEval Working Notes Proceedings.
  • Bischke, B., Helber, P., & Dengel, A. (2018). Global-Local Feature Fusion for Image Classification of Flood Affected Roads from Social Multimedia. MediaEval Working Notes Proceedings.
  • Yi, Y., Wang, H., & Li, Q. (2018). CNN Features for Emotional Impact of Movies Task. MediaEval Working Notes Proceedings.
  • Yang, Y. M. (2018). Short-time emotion tracker using a convolutional autoencoder.
  • Quan, K. A. C., Nguyen, V. T., & Tran, M. T. (2018). Frame-based Evaluation with Deep Features to Predict Emotional Impact of Movies. MediaEval Working Notes Proceedings.
  • Feng, Y., Shebotnov, S., Brenner, C., & Sester, M. (2018). Ensembled convolutional neural network models for retrieving flood relevant tweets. Image.
  • Ramı́rez G, Villatoro, E., Ionescu, B., Escalante, H. J., Escalera, S., Larson, M., Müller, H., & Guyon, I. (2018). Overview of the multimedia information processing for personality & social networks analysis contest. International Conference on Pattern Recognition, 127–139.
  • Bischke, B., Bhardwaj, P., Gautam, A., Helber, P., Borth, D., & Dengel, A. (2017). Detection of Flooding Events in Social Multimedia and Satellite Imagery using Deep Neural Networks. MediaEval Working Notes Proceedings.
  • Jin, Z., Cao, J., Guo, H., Zhang, Y., & Luo, J. (2017). Multimodal fusion with recurrent neural networks for rumor detection on microblogs. ACM International Conference on Multimedia.
  • Aljanaki, A., Yang, Y. H., & Soleymani, M. (2017). Developing a benchmark for emotional analysis of music. PloS One.
  • Baveye, Y., Chamaret, C., Dellandréa, E., & Chen, L. (2017). Affective video content analysis: A multidisciplinary insight. IEEE Transactions on Affective Computing.
  • Boididou, C., Papadopoulos, S., Apostolidis, L., & Kompatsiaris, Y. (2017). Learning to detect misleading content on twitter. ACM International Conference on Multimedia Retrieval.
  • Avgerinakis, K., Moumtzidou, A., Andreadis, S., Michail, E., Gialampoukidis, I., Vrochidis, S., & Kompatsiaris, I. (2017). Visual and Textual Analysis of Social Media and Satellite Images for Flood Detection@ Multimedia Satellite Task MediaEval 2017. MediaEval Working Notes Proceedings.
  • Raymond, C., & Gravier, G. (2017). Deep Neural Architectures for Automatic Representation Learning from Multimedia Multimodal Data. PhD Thesis.
  • Yang, Z., Li, Q., Liu, W., Ma, Y., & Cheng, M. (2017). Dual graph regularized NMF model for social event detection from Flickr data. ACM International Conference on World Wide Web.
  • Ahmad, K., Pogorelov, K., Riegler, M., Conci, N., & Halvorsen, P. (2017). CNN and GAN Based Satellite and Social Media Data Fusion for Disaster Detection. MediaEval Working Notes Proceedings.
  • Hu, X., Lee, J. H., Bainbridge, D., Choi, K., Organisciak, P., & Downie, J. S. (2017). The MIREX grand challenge: A framework of holistic user-experience evaluation in music information retrieval. Journal of the Association for Information Science and Technology.
  • Dang-Nguyen, D. T., Piras, L., Giacinto, G., Boato, G., & Natale, F. G. B. D. (2017). Multimodal retrieval with diversification and relevance feedback for tourist attraction images. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM).
  • Lidon, A., Bolaños, M., Dimiccoli, M., Radeva, P., Garolera, M., & Giro-i-Nieto, X. (2017). Semantic summarization of egocentric photo stream events. Workshop on Lifelogging Tools and Applications.
  • Kordopatis-Zilos, G., Papadopoulos, S., & Kompatsiaris, I. (2017). Geotagging text content with language models and feature mining. Proceedings of the IEEE.
  • Malik, M., Adavanne, S., Drossos, K., Virtanen, T., Ticha, D., & Jarina, R. (2017). Stacked convolutional and recurrent neural networks for music emotion recognition. ArXiv Preprint.
  • Ahsan, U., Sun, C., Hays, J., & Essa, I. (2017). Complex event recognition from images with few training examples. IEEE Winter Conference on Applications of Computer Vision (WACV).
  • Liu, Y., Gu, Z., Cheung, Y., & Hua, K. A. (2017). Multi-view manifold learning for media interestingness prediction. ACM International Conference on Multimedia Retrieval.
  • Yang, Z., Li, Q., Lu, Z., Ma, Y., Gong, Z., & Liu, W. (2017). Dual structure constrained multimodal feature coding for social event detection from Flickr data. ACM Transactions on Internet Technology (TOIT).
  • Madhavi, M. C., & Patil, H. A. (2017). Partial matching and search space reduction for QbE-STD. Computer Speech and Language.
  • Won, D., Steinert-Threlkeld, Z. C., & Joo, J. (2017). Protest activity detection and perceived violence estimation from social media images. ACM International Conference on Multimedia.
  • Jin, Z., Yao, Y., Ma, Y., & Xu, M. (2017). THUHCSI in MediaEval 2017 Emotional Impact of Movies Task. MediaEval Working Notes Proceedings.
  • Zaharieva, M., Ionescu, B., Gînsca, A. L., Santos, R. L. T., & Müller, H. (2017). Retrieving Diverse Social Images at MediaEval 2017: Challenges, Dataset and Evaluation. MediaEval Working Notes Proceedings.
  • Petkos, G., Schinas, M., Papadopoulos, S., & Kompatsiaris, Y. (2017). Graph-based multimodal clustering for social multimedia. Multimedia Tools and Applications.
  • Demarty, C. H., Sjöberg, M., Constantin, M. G., Duong, N. Q. K., Ionescu, B., Do, T. T., & Wang, H. (2017). Predicting interestingness of visual content. Visual Content Indexing and Retrieval with Psycho-Visual Models.
  • Choi, J., Larson, M., Li, X., Li, K., Friedland, G., & Hanjalic, A. (2017). The Geo-Privacy Bonus of Popular Photo Enhancements. ACM International Conference on Multimedia Retrieval.
  • Moreira, D., Avila, S., Perez, M., Moraes, D., Testoni, V., Valle, E., Goldenstein, S., & Rocha, A. (2017). Temporal robust features for violence detection. IEEE Winter Conference on Applications of Computer Vision (WACV).
  • Ahmad, S., Ahmad, K., Ahmad, N., & Conci, N. (2017). Convolutional Neural Networks for Disaster Images Retrieval. MediaEval Working Notes Proceedings.
  • Tian, L., Muszynski, M., Lai, C., Moore, J. D., Kostoulas, T., Lombardo, P., Pun, T., & Chanel, G. (2017). Recognizing induced emotions of movie audiences: Are induced and perceived emotions the same? IEEE International Conference on Affective Computing and Intelligent Interaction (ACII).
  • Chen, H., Leung, C. C., Xie, L., Ma, B., & Li, H. (2017). Multitask feature learning for low-resource query-by-example spoken term detection. IEEE Journal of Selected Topics in Signal Processing.
  • Constantin, M. G., Boteanu, B. A., & Ionescu, B. (2017). LAPI at MediaEval 2017-Predicting Media Interestingness. MediaEval Working Notes Proceedings.
  • Gündoğdu, B., Yusuf, B., & Saraçlar, M. (2017). Joint learning of distance metric and query model for posteriorgram-based keyword search. IEEE Journal of Selected Topics in Signal Processing.
  • Coutinho, E., & Schuller, B. (2017). Shared acoustic codes underlie emotional communication in music and speech - Evidence from deep transfer learning. PloS One.
  • Madhavi, M. C., & Patil, H. A. (2017). VTLN-warped Gaussian posteriorgram for QbE-STD. IEEE European Signal Processing Conference (EUSIPCO).
  • Li, X., Larson, M., & Hanjalic, A. (2017). Geo-distinctive visual element matching for location estimation of images. IEEE Transactions on Multimedia.
  • Sansone, E., Apostolidis, K., Conci, N., Boato, G., Mezaris, V., & Natale, F. G. B. D. (2017). Automatic synchronization of multi-user photo galleries. IEEE Transactions on Multimedia.
  • Tkachenko, N., Zubiaga, A., & Procter, R. (2017). Wisc at mediaeval 2017: Multimedia satellite task. MediaEval Working Notes Proceedings.
  • Gan, Q., Wang, S., Hao, L., & Ji, Q. (2017). A multimodal deep regression bayesian network for affective video content analyses. IEEE International Conference on Computer Vision.
  • Gialampoukidis, I., Moumtzidou, A., Liparas, D., Tsikrika, T., Vrochidis, S., & Kompatsiaris, I. (2017). Multimedia retrieval based on non-linear graph-based fusion and partial least squares regression. Multimedia Tools and Applications.
  • Zhang, X., Wang, S., Li, Z., & Ma, S. (2017). Landmark image retrieval by jointing feature refinement and multimodal classifier learning. IEEE Transactions on Cybernetics.
  • Pogorelov, K., Riegler, M., Halvorsen, P., Griwodz, C., de Lange, T., Randel, K., Eskeland, S., Nguyen, D., Tien, D., Ostroukhova, O., & others. (2017). A comparison of deep learning with global features for gastrointestinal disease detection. MediaEval Working Notes Proceedings.
  • Le, N., Bredin, H., Sargent, G., Lopez-Otero, P., Barras, C., Guinaudeau, C., Gravier, G., da Fonseca, G. B., Freire, I. L., & others. (2017). Towards large scale multimedia indexing: A case study on person discovery in broadcast news. ACM International Workshop on Content-Based Multimedia Indexing.
  • Fu, X., Bin, Y., Peng, L., Zhou, J., Yang, Y., & Shen, H. T. (2017). BMC@ MediaEval 2017 Multimedia Satellite Task via Regression Random Forest. MediaEval Working Notes Proceedings.
  • Berson, E., Demarty, C. H., & Duong, N. (2017). Multimodality and deep learning when predicting media interestingness. MediaEval Working Notes Proceedings.
  • Parekh, J., Tibrewal, H., & Parekh, S. (2017). The IITB Predicting Media Interestingness System for MediaEval 2017. MediaEval Working Notes Proceedings.
  • Papadopoulou, O., Zampoglou, M., Papadopoulos, S., & Kompatsiaris, Y. (2017). Web video verification using contextual cues. ACM International Workshop on Multimedia Forensics and Security.
  • Liu, Y., Gu, Z., & Ko, T. H. (2017). Predicting Media Interestingness via Biased Discriminant Embedding and Supervised Manifold Regression. MediaEval Working Notes Proceedings.
  • Shen, Y., Demarty, C. H., & Duong, N. Q. K. (2017). Deep learning for multimodal-based video interestingness prediction. IEEE International Conference on Multimedia and Expo (ICME).
  • Sutcliffe, R. F. E., & Maidín, Ó. (2017). … C@merata task at MediaEval 2017: Natural Language Queries about Music, their JSON Representations, and Matching Passages in MusicXML Scores. MediaEval Working Notes Proceedings.
  • Petscharnig, S., Schöffmann, K., & Lux, M. (2017). An Inception-like CNN Architecture for GI Disease and Anatomical Landmark Classification. MediaEval Working Notes Proceedings.
  • Koutini, K., Imenina, A., Dorfer, M., Gruber, A., & Schedl, M. (2017). MediaEval 2017 AcousticBrainz Genre Task: Multilayer Perceptron Approach. MediaEval Working Notes Proceedings.
  • Murauer, B., Mayerl, M., Tschuggnall, M., Zangerle, E., Pichl, M., & Specht, G. (2017). Hierarchical Multilabel Classification and Voting for Genre Classification. MediaEval Working Notes Proceedings.
  • Nogueira, K., Fadel, S. G., Dourado, Í. C., de Oliveira Werneck, R., Muñoz, J. A. V., Penatti, O. A. B., Calumby, R. T., Li, L., dos Santos, J. A., & da Silva Torres, R. (2017). Data-Driven Flood Detection using Neural Networks. MediaEval Working Notes Proceedings.
  • Gündogdu, B. (2017). Keyword search for low resource languages.
  • Beiji, Z., Mohammed, N., Chengzhang, Z., & Rongchang, Z. (2017). Crime hotspot detection and monitoring using video based event modeling and mapping techniques. International Journal of Computational Intelligence Systems.
  • Almeida, J., Valem, L. P., & Pedronette, D. C. G. (2017). A rank aggregation framework for video interestingness prediction. International Conference on Image Analysis and Processing.
  • Constantin, M. G., & Ionescu, B. (2017). Content description for Predicting image Interestingness. IEEE International Symposium on Signals, Circuits and Systems (ISSCS).
  • Chakraborty, R., Pandharipande, M., & Kopparapu, S. K. (2017). Analyzing Emotion in Spontaneous Speech.
  • Madhavi, M. C., & Patil, H. A. (2017). Combining evidences from detection sources for query-by-example spoken term detection. IEEE Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC).
  • Galuščáková, P., Batko, M., Čech, J., Matas, J., Novák, D., & Pecina, P. (2017). Visual descriptors in methods for video hyperlinking. ACM International Conference on Multimedia Retrieval.
  • Sutcliffe, R. F. E., Maidín, D. Ó., & Hovy, E. H. (2017). The C@merata task at MediaEval 2017: Natural Language Queries about Music, their JSON Representations, and Matching Passages in MusicXML Scores. MediaEval Working Notes Proceedings.
  • Agrawal, T., Gupta, R., Sahu, S., & Espy-Wilson, C. Y. (2017). SCL-UMD at the Medico Task-MediaEval 2017: Transfer Learning based Classification of Medical Images. MediaEval Working Notes Proceedings.
  • Liu, Y., Gu, Z., & Cheung, W. K. (2017). HKBU at MediaEval 2017 Medico: Medical multimedia task. MediaEval Working Notes Proceedings.
  • Yoon, S. (2017). TCNJ-CS@ MediaEval 2017 Emotional Impact of Movie Task. MediaEval Working Notes Proceedings.
  • Rueben, M., Smart, W. D., Grimm, C. M., & Cakmak, M. (2017). Privacy-Sensitive Robotics. ACM/IEEE International Conference on Human-Robot Interaction.
  • Tian, L., Moore, J. D., & Lai, C. (2017). Recognizing emotions in spoken dialogue with acoustic and lexical cues. Proceedings of the International ACM SIGIR.
  • Lopez-Otero, P., Fernández, L. D., & Garcia-Mateo, C. (2017). Compensating Gender Variability in Query-by-Example Search on Speech Using Voice Conversion. INTERSPEECH.
  • Baecchi, C., Uricchio, T., Bertini, M., & Bimbo, A. D. (2017). Deep sentiment features of context and faces for affective video analysis. ACM International Conference on Multimedia Retrieval.
  • Baruah, S., Gupta, R., & Narayanan, S. (2017). A knowledge transfer and boosting approach to the prediction of affect in movies. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
  • Wang, B., & Larson, M. (2017). Beyond concept detection: The potential of user intent for image retrieval. ACM Workshop on Multimodal Understanding of Social, Affective and Subjective Attributes.
  • Katsiavalos, A. (2017). The DMUN System at the MediaEval 2017 C@merata Task. MediaEval Working Notes Proceedings.
  • Renders, J. M., & Csurka, G. (2017). NLE@ MediaEval’17: Combining Cross-Media Similarity and Embeddings for Retrieving Diverse Social Images. MediaEval Working Notes Proceedings.
  • Abdelhalim, A. M., & Salem, M. A. M. (2017). Intelligent organization of multiuser photo galleries using sub-event detection. IEEE International Conference on Computer Engineering and Systems (ICCES).
  • Karslioglu, N., Timar, Y., Salah, A. A., & Kaya, H. (2017). BOUN-NKU in MediaEval 2017 Emotional Impact of Movies Task. MediaEval Working Notes Proceedings.
  • Zhao, Z., & Larson, M. (2017). Retrieving Social Flooding Images Based on Multimodal Information. MediaEval Working Notes Proceedings.
  • Chen, T., Wang, Y., Wang, S., & Chen, S. (2017). Exploring Domain Knowledge for Affective Video Content Analyses. ACM International Conference on Multimedia.
  • Wang, H., Yang, L., Wu, X., & He, J. (2017). A review of bloody violence in video classification. IEEE International Conference on the Frontiers and Advances in Data Science (FADS).
  • Permadi, R. A., Putra, S. G. P., Helmiriawan, C., & Liem, C. C. S. (2017). DUT-MMSR at MediaEval 2017: Predicting Media Interestingness Task. MediaEval Working Notes Proceedings.
  • Almeida, J., & Savii, R. M. (2017). GIBIS at MediaEval 2017: Predicting Media Interestingness Task. MediaEval Working Notes Proceedings.
  • Ma, Y., Li, X., Xu, M., Jia, J., & Cai, L. (2017). Multi-scale context based attention for dynamic music emotion prediction. ACM International Conference on Multimedia.
  • Jan, A. (2017). Deep learning based facial expression recognition and its applications.
  • Boteanu, B., Mironică, I., & Ionescu, B. (2017). Pseudo-relevance feedback diversification of social image retrieval results. Multimedia Tools and Applications.
  • Bouhlel, N., Feki, G., Ammar, A. B., & Amar, C. B. (2017). A hypergraph-based reranking model for retrieving diverse social images. International Conference on Computer Analysis of Images and Patterns.
  • Campi, L. C. (2017). Deep learning for multimedia processing-Predicting media interestingness. PhD Thesis.
  • Seddati, O., Ben-Lhachemi, N., Dupont, S., & Mahmoudi, S. (2017). UMONS@ MediaEval 2017: Diverse Social Images Retrieval. MediaEval Working Notes Proceedings.
  • Calumby, R. T., do Carmo Araujo, I. B. A., Cordeiro, F. S., Bertoni, F., Canuto, S. D., Belém, F., Gonçalves, M. A., Dourado, I. C., Munoz, J., Li, L., & others. (2017). Rank Fusion and Multimodal Per-topic Adaptiveness for Diverse Image Retrieval. MediaEval Working Notes Proceedings.
  • Dauban, N. (2017). DNN in the AcousticBrainz Genre Task 2017. MediaEval Working Notes Proceedings.
  • Kim, K., & Choi, J. (2017). ICSI in MediaEval 2017 Multi-Genre Music Task. MediaEval Working Notes Proceedings.
  • Peng, L., Bin, Y., Fu, X., Zhou, J., Yang, Y., & Shen, H. T. (2017). CFM@ MediaEval 2017 Retrieving Diverse Social Images Task via Re-ranking and Hierarchical Clustering. MediaEval Working Notes Proceedings.
  • Wang, B., & Larson, M. (2017). Exploiting visual-based intent classifcation for Diverse Social Image Retrieval. MediaEval Working Notes Proceedings.
  • Fonseca, G. B. D., Freire, I. L., Jr, Z. P., Guimarães, S. J. F., Sargent, G., Sicre, R., & Gravier, G. (2017). Tag Propagation Approaches within Speaking Face Graphs for Multimodal Person Discovery. ACM International Workshop on Content-Based Multimedia Indexing.
  • Navarro, D. R. (2017). Multimodal Deep Learning methods for person annotation in video sequences. PhD Thesis.
  • Zahálka, J. (2017). The machine in multimedia analytics.
  • Domènech, D. F. (2017). Knowledge-based and data-driven approaches for geographical information access. PhD Thesis.
  • Celik, E. (2017). Affective analysis of videos: detecting emotional content in real-life scenarios. PhD Thesis.
  • Qi, F., Yang, X., Zhang, T., & Xu, C. (2017). Discriminative Multimodal Embedding for Event Classication.
  • Agrawal, T., Gupta, R., & Narayanan, S. (2017). Multimodal detection of fake social media use through a fusion of classification and pairwise ranking systems. IEEE European Signal Processing Conference (EUSIPCO).
  • Truelove, M. (2017). Witnesses of events in social media. PhD Thesis.
  • Thomas, T. P. (2017). The Emotional Impact of Audio-Visual Stimuli. PhD Thesis.
  • Thomas, T., Domínguez, M., & Ptucha, R. (2017). Deep independent audio-visual affect analysis. IEEE Global Conference on Signal and Information Processing (GlobalSIP).
  • Xue, J., & Eguchi, K. (2017). Video Data Modeling Using Sequential Correspondence Hierarchical Dirichlet Processes. IEICE TRANSACTIONS on Information and Systems.
  • Xiang, S., Rong, W., Xiong, Z., Gao, M., & Xiong, Q. (2017). Visual and Audio Aware Bi-Modal Video Emotion Recognition. CogSci.
  • White, J., & Oard, D. W. (2017). Simulating Zero-Resource Spoken Term Discovery. ACM on Conference on Information and Knowledge Management.
  • van Hout, J., Mitra, V., Franco, H., Bartels, C., & Vergyri, D. (2017). Tackling unseen acoustic conditions in query-by-example search using time and frequency convolution for multilingual deep bottleneck features. IEEE Automatic Speech Recognition and Understanding Workshop (ASRU).
  • Alsaedi, N. (2017). Event identification in social media using classification-clustering framework. PhD Thesis.
  • Reddy, P. R., Murty, K. S. R., & Yegnanarayana, B. (2017). Representation Learning for Spoken Term Detection. Pattern Recognition and Big Data.
  • Madhavi, M. C., & Patil, H. A. (2017). Two Stage Zero-resource Approaches for QbE-STD. IEEE International Conference on Advances in Pattern Recognition (ICAPR).
  • Vukotic, V. (2017). Deep neural architectures for automatic representation learning from multimedia multimodal data. PhD Thesis.
  • Dellandréa, E., Chen, L., Baveye, Y., Sjöberg, M., & Chamaret, C. (2016). The mediaeval 2016 emotional impact of movies task. MediaEval Working Notes Proceedings.
  • Panagiotou, N., Katakis, I., & Gunopulos, D. (2016). Detecting events in online social networks: Definitions, trends and challenges. Solving Large Scale Learning Tasks. Challenges and Algorithms.
  • Mironică, I., Duta, I. C., Ionescu, B., & Sebe, N. (2016). A modified vector of locally aggregated descriptors approach for fast video classification. Multimedia Tools and Applications.
  • Papadopoulos, S., Bontcheva, K., Jaho, E., Lupu, M., & Castillo, C. (2016). Overview of the special issue on trust and veracity of information in social media. ACM Transactions on Information Systems (TOIS).
  • Kaneko, T., & Yanai, K. (2016). Event photo mining from twitter using keyword bursts and image clustering. Neurocomputing.
  • Ionescu, B., Popescu, A., Radu, A. L., & Muller, H. (2016). Result diversification in social image retrieval: a benchmarking framework. Multimedia Tools and Applications.
  • Vukotić, V., Raymond, C., & Gravier, G. (2016). Bidirectional joint representation learning with symmetrical deep neural networks for multimodal and crossmodal applications. ACM International Conference on Multimedia Retrieval.
  • Ribeiro, P. C., Audigier, R., & Pham, Q. C. (2016). RIMOC, a feature to discriminate unstructured motions: Application to violence detection for video-surveillance. Computer Vision and Image Understanding.
  • Lopez-Otero, P., Docio-Fernandez, L., & Garcia-Mateo, C. (2016). Finding relevant features for zero-resource query-by-example search on speech. Speech Communication.
  • Shen, Y., Demarty, C. H., & Duong, N. Q. K. (2016). Technicolor@ MediaEval 2016 Predicting Media Interestingness Task. MediaEval Working Notes Proceedings.
  • Boato, G., Dang-Nguyen, D. T., Muratov, O., Alajlan, N., & Natale, F. G. B. D. (2016). Exploiting visual saliency for increasing diversity of image retrieval results. Multimedia Tools and Applications.
  • Mironică, I., Ionescu, B., Uijlings, J., & Sebe, N. (2016). Fisher kernel temporal variation-based relevance feedback for video retrieval. Computer Vision and Image Understanding.
  • Xu, H., Hou, J., Xiao, X., Leung, C. C., Wang, L., Lv, H., Xie, L., Ma, B., Chng, E. S., Li, H., & others. (2016). Approximate search of audio queries by using DTW with phone time boundary and data augmentation. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
  • Bredin, H., Barras, C., & Guinaudeau, C. (2016). Multimodal person discovery in broadcast TV at MediaEval 2016. MediaEval Working Notes Proceedings.
  • Ma, Y., Ye, Z., & Xu, M. (2016). THU-HCSI at MediaEval 2016: Emotional Impact of Movies Task. MediaEval Working Notes Proceedings.
  • Leung, C. C., Wang, L., Xu, H., Hou, J., & ... (2016). Toward High-Performance Language-Independent Query-by-Example Spoken Term Detection for MediaEval 2015: Post-Evaluation Analysis. Interspeech.
  • Li, X., Xianyu, H., Tian, J., Chen, W., Meng, F., Xu, M., & Cai, L. (2016). A deep bidirectional long short-term memory based multi-scale approach for music dynamic emotion prediction. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
  • Skácel, M., Karafiát, M., Ondel, L., Uchytil, A., & Szöke, I. (2016). BUT Zero-Cost Speech Recognition 2016 System. MediaEval Working Notes Proceedings.
  • Chen, S., & Jin, Q. (2016). RUC at MediaEval 2016 Emotional Impact of Movies Task: Fusion of Multimodal Features. MediaEval Working Notes Proceedings.
  • Boididou, C., Middleton, S. E., Papadopoulos, S., Nguyen, D., Tien, D., Riegler, M., Boato, G., Petlund, A., & Kompatsiaris, Y. (2016). The VMU participation@ verifying multimedia use 2016. MediaEval Working Notes Proceedings.
  • Phan, Q. T., Budroni, A., Pasquini, C., & Natale, F. G. B. D. (2016). A Hybrid Approach for Multimedia Use Verification. MediaEval Working Notes Proceedings.
  • Maigrot, C., Claveau, V., Kijak, E., & Sicre, R. (2016). Mediaeval 2016: A multimodal system for the verifying multimedia use task. MediaEval Working Notes Proceedings.
  • Castellanos, A., Benavent, X., Garcı́a-Serrano A, & de Ves, E. (2016). UNED-UV@ 2016 Retrieving Diverse Social Images Task. MediaEval Working Notes Proceedings.
  • Rayatdoost, S., & Soleymani, M. (2016). Ranking Images and Videos on Visual Interestingness by Visual Sentiment Features. MediaEval Working Notes Proceedings.
  • Ionescu, B., Gînscă, A. L., Boteanu, B., Lupu, M., Popescu, A., & Müller, H. (2016). Div150Multi: a social image retrieval result diversification dataset with multi-topic queries. International Conference on Multimedia Systems.
  • Jan, A., Gaus, Y. F. B. A., Meng, H., & Zhang, F. (2016). BUL in MediaEval 2016 Emotional Impact of Movies Task. MediaEval Working Notes Proceedings.
  • Liu, Y., Gu, Z., Zhang, Y., & Liu, Y. (2016). Mining Emotional Features of Movies. MediaEval Working Notes Proceedings.
  • Cao, J., Jin, Z., Zhang, Y., & Zhang, Y. (2016). MCG-ICT at MediaEval 2016 Verifying Tweets from both Text and Visual Content. MediaEval Working Notes Proceedings.
  • Xianyu, H., Li, X., Chen, W., Meng, F., Tian, J., Xu, M., & Cai, L. (2016). SVR based double-scale regression for dynamic emotion prediction in music. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
  • Mu, G., Cao, H., & Jin, Q. (2016). Violent scene detection using convolutional neural networks and deep audio features. Chinese Conference on Pattern Recognition.
  • Madhavi, M. C., & Patil, H. A. (2016). Modification in sequential dynamic time warping for fast computation of query-by-example spoken term detection task. International Conference on Signal Processing and Communications (SPCOM).
  • Liu, Y., Gu, Z., & Cheung, Y. (2016). Supervised Manifold Learning for Media Interestingness Prediction. MediaEval Working Notes Proceedings.
  • Liem, C. (2016). TUD-MMC at MediaEval 2016: Predicting Media Interestingness Task. MediaEval Working Notes Proceedings.
  • Acar, E., Hopfgartner, F., & Albayrak, S. (2016). Breaking down violence detection: Combining divide-et-impera and coarse-to-fine strategies. Neurocomputing.
  • Castellanos, A., Benavent, X., Garcı́a-Serrano A, de Ves, E., & Cigarrán, J. (2016). UNED-UV@ retrieving diverse social images task. MediaEval Working Notes Proceedings.
  • Ahmad, K., Natale, F. D., Boato, G., & Rosani, A. (2016). A hierarchical approach to event discovery from single images using MIL framework. IEEE Global Conference on Signal and Information Processing (GlobalSIP).
  • Zeppelzauer, M., & Schopfhauser, D. (2016). Multimodal classification of events in social media. Image and Vision Computing.
  • Boteanu, B., Constantin, M. G., & Ionescu, B. (2016). LAPI@ 2016 Retrieving Diverse Social Images Task: A Pseudo-Relevance Feedback Diversification Perspective. MediaEval Working Notes Proceedings.
  • Aljanaki, A., Yang, Y. H., & Soleymani, M. (2016). Emotion in Music task: Lessons Learned. MediaEval Working Notes Proceedings.
  • Fukuyama, S., & Goto, M. (2016). Music emotion recognition with adaptive aggregation of Gaussian process regressors. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
  • Anastasia, T., & Leontios, H. (2016). Auth-sgp in mediaeval 2016 emotional impact of movies task. MediaEval Working Notes Proceedings.
  • Xu, B., Fu, Y., & Jiang, Y. G. (2016). BigVid at MediaEval 2016: predicting interestingness in images and videos. MediaEval Working Notes Proceedings.
  • Li, X., Tian, J., Xu, M., Ning, Y., & Cai, L. (2016). DBLSTM-based multi-scale fusion for dynamic emotion prediction in music. IEEE International Conference on Multimedia and Expo (ICME).
  • Tollari, S. (2016). UPMC at mediaeval 2016 retrieving diverse social images task. MediaEval Working Notes Proceedings.
  • Xue, J., & Eguchi, K. (2016). Sequential correspondence hierarchical Dirichlet processes for video data analysis. ACM International Conference on Multimedia Retrieval.
  • Zhang, W., Ngo, C. W., & Cao, X. (2016). Hyperlink-aware object retrieval. IEEE Transactions on Image Processing.
  • Khwileh, A., Ganguly, D., & Jones, G. J. F. (2016). Utilisation of metadata fields and query expansion in cross-lingual search of user-generated internet video. Journal of Artificial Intelligence Research.
  • Sutcliffe, R. F. E., Collins, T., Hovy, E. H., Lewis, R., Fox, C., & Root, D. L. (2016). The C@merata task at MediaEval 2016: Natural Language Queries Derived from Exam Papers, Articles and Other Sources against Classical Music Scores in MusicXML. MediaEval Working Notes Proceedings.
  • Kordopatis-Zilos, G., Papadopoulos, S., & Kompatsiaris, Y. (2016). In-depth exploration of geotagging performance using sampling strategies on yfcc100m. ACM Workshop on Multimedia COMMONS.
  • Proença, J., & Perdigão, F. (2016). Segmented Dynamic Time Warping for Spoken Query-by-Example Search. INTERSPEECH.
  • Kordopatis-Zilos, G., Popescu, A., Papadopoulos, S., & Kompatsiaris, Y. (2016). Placing Images with Refined Language Models and Similarity Search with PCA-reduced VGG Features. MediaEval Working Notes Proceedings.
  • Singh, S. K., & Rafiei, D. (2016). Geotagging Flickr Photos And Videos Using Language Models. MediaEval Working Notes Proceedings.
  • Lam, V., Do, T., Phan, S., Le, D. D., Satoh, S., & ... (2016). NII-UIT at MediaEval 2016 Predicting Media Interestingness Task. MediaEval Working Notes Proceedings.
  • Almeida, J. (2016). UNIFESP at MediaEval 2016: Predicting Media Interestingness Task. MediaEval Working Notes Proceedings.
  • Li, X., Huo, Y., Jin, Q., & Xu, J. (2016). Detecting Violence in Video using Subclasses. ACM International Conference on Multimedia.
  • Tiwari, S. N., Duong, N. Q. K., Lefebvre, F., Demarty, C. H., Huet, B., & Chevallier, L. (2016). Deep features for multimodal emotion classification.
  • Sargent, G., de Fonseca, G. B., Freire, I. L., Sicre, R., Jr Z Do Patrocı́nio, Guimarães, S., & Gravier, G. (2016). Puc minas and irisa at multimodal person discovery. MediaEval Working Notes Proceedings.
  • Riegler, M., Spampinato, C., Larson, M., Griwodz, C., & Halvorsen, P. (2016). The MediaEval 2016 Context of Experience Task: Recommending Videos Suiting a Watching Situation. MediaEval Working Notes Proceedings.
  • Parekh, J., & Parekh, S. (2016). The MLPBOON Predicting Media Interestingness System for MediaEval 2016. MediaEval Working Notes Proceedings.
  • Lam, V., Le, S. P., Do, T., Ngo, T. D., Le, D. D., & Duong, D. A. (2016). Computational optimization for violent scenes detection. IEEE International Conference on Computer, Control, Informatics and Its Applications (IC3INA).
  • Vasudevan, A. B., Gygli, M., Volokitin, A., & Gool, L. V. (2016). ETH-CVL@ MediaEval 2016: Textual-Visual Embeddings and Video2GIF for Video Interestingness. MediaEval Working Notes Proceedings.
  • Tan, C. C., & Ngo, C. W. (2016). On the use of commonsense ontology for multimedia event recounting. International Journal of Multimedia Information Retrieval.
  • Zaharieva, M. (2016). An Adaptive Clustering Approach for the Diversification of Image Retrieval Results. MediaEval Working Notes Proceedings.
  • Le, N., Meignier, S., & Odobez, J. M. (2016). Eumssi team at the mediaeval person discovery challenge 2016. MediaEval Working Notes Proceedings.
  • Katsiavalos, A. (2016). DMUN: A Textual Interface for Content-Based Music Information Retrieval in the C@merata task for MediaEval 2016. MediaEval Working Notes Proceedings.
  • Aljanaki, A. (2016). Emotion in Music: representation and computational modeling. PhD Dissertation.
  • Choi, J., Larson, M., Li, X., Friedland, G., & Hanjalic, A. (2016). Where to be wary: The impact of widespread photo-taking and image enhancement practices on users’ geo-privacy. ArXiv Preprint.
  • Muñoz, J. A. V., Li, L. T., Dourado, Í. C., Nogueira, K., Fadel, S. G., Penatti, O. A. B., Almeida, J., Pereira, L. A. M., Calumby, R. T., dos Santos, J. A., & others. (2016). RECOD@ Placing Task of MediaEval 2016: A Ranking Fusion Approach for Geographic-Location Prediction of Multimedia Objects. MediaEval Working Notes Proceedings.
  • Mytrova, M. (2016). The KIAM System in the C@merata Task at MediaEval 2016. MediaEval Working Notes Proceedings.
  • Buccoli, M., Zanoni, M., Fazekas, G., Sarti, A., & Sandler, M. B. (2016). A Higher-Dimensional Expansion of Affective Norms for English Terms for Music Tagging. ISMIR.
  • Ferreira, C. D., Calumby, R. T., Araujo, I. B. A. C., Dourado, I. C., Munoz, J. A. V., Penatti, O. A. B., Li, L. T., Almeida, J., & da Silva Torres, R. (2016). Recod@ MediaEval 2016: Diverse Social Images Retrieval. MediaEval Working Notes Proceedings.
  • Kumar, N., Guha, T., Huang, C. W., Vaz, C., & Narayanan, S. S. (2016). Novel affective features for multiscale prediction of emotion in music. IEEE International Workshop on Multimedia Signal Processing (MMSP) .
  • Wu, Y. C., & Chen, H. H. (2016). Generation of Affective Accompaniment in Accordance With Emotion Flow. IEEE/ACM Transactions on Audio, Speech and Language Processing (TASLP).
  • Abebe, M. A., Tekli, J., Getahun, F., Tekli, G., & Chbeir, R. (2016). A General Multimedia Representation Space Model toward Event-Based Collective Knowledge Management. EEE International Conference on Computational Science and Engineering (CSE).
  • Alsaedi, N., Burnap, P., & Rana, O. (2016). Sensing Real-World Events Using Social Media Data and a Classification-Clustering Framework. IEEE/WIC/ACM International Conference on Web Intelligence (WI).
  • Pogorelov, K., Riegler, M., Halvorsen, P., & Griwodz, C. (2016). Simula@ MediaEval 2016 Context of Experience Task. MediaEval Working Notes Proceedings.
  • Godambe, T., Kumar, N., Kumar, P., Raghavendra, V., & Ganapathiraju, A. (2016). ININ Submission to Zero Cost ASR Task at MediaEval 2016. MediaEval Working Notes Proceedings.
  • Wang, B., & Liem, C. C. S. (2016). TUD-MMC at MediaEval 2016: Context of Experience task. MediaEval Working Notes Proceedings.
  • Sgouroglou, P., Aziz, T. M. A., & Lux, M. (2016). Context of Experience-MediaEval Submission of ITEC/AAU. MediaEval Working Notes Proceedings.
  • Gaus, Y. F. A., Meng, H., Jan, A., Liu, J., Qin, R., & Zhang, F. (2016). MediaEval 2016: Performance of Hand-crafted and Deep features with Exponent Weighted Decision Fusion for Prediction Emotional Impact of Movies. MediaEval Working Notes Proceedings.
  • Wang, L., Ni, C., Leung, C. C., You, C., Xie, L., Xu, H., Xiao, X., Nwe, T. L., Chng, E. S., Ma, B., & others. (2016). The NNI Vietnamese Speech Recognition System for MediaEval 2016. MediaEval Working Notes Proceedings.
  • Nishi, F., Inoue, N., Iwano, K., & Shinoda, K. (2016). Tokyo Tech at MediaEval 2016 Multimodal Person Discovery in Broadcast TV task. MediaEval Working Notes Proceedings.
  • Liem, C. C. S. (2016). Crowdsourcing audience perspectives on classical music. 2016 IEEE International Conference on Multimedia and Expo Workshops (ICMEW).
  • Yang, Z., Li, Q., Liu, W., & Ma, Y. (2016). Class-Wise Data Reconstruction for Event Detection from Flickr Streaming Data. IEEE International Conference on Ubi-Media Computing.
  • Caranica, A., Cucu, H., & Buzo, A. (2016). Exploring an unsupervised, language independent, spoken document retrieval system. International Workshop on Content-Based Multimedia Indexing (CBMI).
  • Pellegrini, T., & Barrière, V. (2016). Sous-continents Estimation of Emotion in Music with Recurrent Neural Networks. MediaEval Working Notes Proceedings.
  • Xu, B., Fan, G., & Yang, D. (2016). Topic Modeling Based Image Clustering by Events in Social Media. Scientific Programming.
  • Eskevich, M., Jones, G. J. F., Aly, R., Ordelman, R., & Huet, B. (2016). Pursuing a Moving Target. Iterative Use of Benchmarking of a Task to Understand the Task. MediaEval Working Notes Proceedings.
  • Erdogan, A. E. G., & Erdem, E. (2016). HUCVL at MediaEval 2016: Predicting Interesting Key Frames with Deep Models. MediaEval Working Notes Proceedings.
  • Wang, H., Lee, T., Leung, C. C., Ma, B., & Li, H. (2015). Acoustic segment modeling with spectral clustering methods. IEEE/ACM Transactions on Audio, Speech, and Language Processing.
  • Dai, Q., Zhao, R. W., Wu, Z., Wang, X., Gu, Z., Wu, W., & Jiang, Y. G. (2015). Fudan-Huawei at MediaEval 2015: Detecting Violent Scenes and Affective Impact in Movies with Deep Learning. MediaEval Working Notes Proceedings.
  • Söke, I., Rodriguez-Fuentes, L. J., Buzo, A., Anguera, X., Metze, F., Proenca, J., Lojka, M., & Xiong, X. (2015). Query by Example Search on Speech at Mediaeval 2015. MediaEval Working Notes Proceedings.
  • Yin, Y., Shen, Z., Zhang, L., & Zimmermann, R. (2015). Spatial-temporal tag mining for automatic geospatial video annotation. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM).
  • Dang-Nguyen, D. T., Piras, L., Giacinto, G., Boato, G., & Natale, F. G. B. D. (2015). A hybrid approach for retrieving diverse social images of landmarks. IEEE International Conference on Multimedia and Expo (ICME).
  • Spyromitros-Xioufis, E., Papadopoulos, S., Ginsca, A. L., Popescu, A., Kompatsiaris, Y., & Vlahavas, I. (2015). Improving diversity in image search via supervised relevance scoring. ACM International Conference on Multimedia Retrieval.
  • Pang, J., Jia, F., Zhang, C., Zhang, W., Huang, Q., & Yin, B. (2015). Unsupervised web topic detection using a ranked clustering-like pattern across similarity cascades. IEEE Transactions on Multimedia.
  • Söke, I., Skácel, M., Burget, L., & Černocky, J. (2015). Coping with channel mismatch in query-by-example-but quesst 2014. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
  • Rosani, A., Boato, G., & Natale, F. G. B. D. (2015). Eventmask: A game-based framework for event-saliency identification in images. IEEE Transactions on Multimedia.
  • Jin, Z., Cao, J., Zhang, Y., & Zhang, Y. (2015). MCG-ICT at MediaEval 2015: Verifying Multimedia Use with a Two-Level Classification Model. MediaEval Working Notes Proceedings.
  • Xu, H., Yang, P., Xiao, X., Xie, L., Leung, C. C., Chen, H., Yu, J., Lv, H., Wang, L., Leow, S. J., & others. (2015). Language independent query-by-example spoken term detection using n-best phone sequences and partial matching. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
  • Lanchantin, P., Gales, M. J. F., Karanasou, P., Liu, X., Qian, Y., Wang, L., Woodland, P. C., & Zhang, C. (2015). The development of the Cambridge University alignment systems for the Multi-Genre Broadcast challenge. IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU).
  • Vlastelica, P. M., Hayrapetyan, S., Tapaswi, M., & Stiefelhagen, R. (2015). KIT at MediaEval 2015-Evaluating Visual Cues for Affective Impact of Movies Task. MediaEval Working Notes Proceedings.
  • Cao, J., Huang, Z., & Yang, Y. (2015). Spatial-aware multimodal location estimation for social images. ACM International Conference on Multimedia.
  • Anguera, X., Rodriguez-Fuentes, L. J., Buzo, A., Metze, F., Szöke, I., & Penagarikano, M. (2015). QUESST2014: Evaluating query-by-example speech search in a zero-resource setting with real-life queries. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
  • Eskevich, M., Aly, R., Ordelman, R., Racca, D. N., Chen, S., & Jones, G. J. F. (2015). SAVA at MediaEval 2015: Search and Anchoring in Video Archives. MediaEval Working Notes Proceedings.
  • Ordelman, R. J. F., Eskevich, M., Aly, R., Huet, B., & Jones, G. (2015). Defining and evaluating video hyperlinking for navigating multimedia archives. ACM International Conference on World Wide Web.
  • Hou, J., Pham, C. C. L. V. T., Leung, C. C., Wang, L., Xu, H., Lv, H., Xie, L., Fu, Z., Ni, C., Xiao, X., & others. (2015). The NNI Query-by-Example System for MediaEval 2015. MediaEval Working Notes Proceedings.
  • Lam, V., Le, S. P., Le, D. D., Satoh, S., & Duong, D. A. (2015). NII-UIT at MediaEval 2015 Affective Impact of Movies Task. MediaEval Working Notes Proceedings.
  • Liao, S., Li, X., Shen, H. T., Yang, Y., & Du, X. (2015). Tag features for geo-aware image classification. IEEE Transactions on Multimedia.
  • Coutinho, E., Trigeorgis, G., Zafeiriou, S., & Schuller, B. W. (2015). Automatically Estimating Emotion in Music with Deep Long-Short Term Memory Recurrent Neural Networks. MediaEval Working Notes Proceedings.
  • Proenga, J., Veiga, A., & Perdigão, F. (2015). Query by example search with segmented dynamic time warping for non-exact spoken queries. IEEE European Signal Processing Conference (EUSIPCO).
  • Ruchaud, N. (2015). Privacy protection filter using stegoscrambling in video surveillance. MediaEval Working Notes Proceedings.
  • Boididou, C., Papadopoulos, S., Dang-Nguyen, D. T., Boato, G., & Kompatsiaris, Y. (2015). The CERTH-UNITN Participation@ Verifying Multimedia Use 2015. MediaEval Working Notes Proceedings.
  • Trigeorgis, G., Coutinho, E., Ringeval, F., Marchi, E., Zafeiriou, S., & Schuller, B. W. (2015). The ICL-TUM-PASSAU Approach for the MediaEval 2015" Affective Impact of Movies" Task. MediaEval Working Notes Proceedings.
  • Seddati, O., Kulah, E., Pironkov, G., Dupont, S., Mahmoudi, S., & Dutoit, T. (2015). UMons at MediaEval 2015 Affective Impact of Movies Task including Violent Scenes Detection. MediaEval Working Notes Proceedings.
  • Li, X., Larson, M., & Hanjalic, A. (2015). Global-scale location prediction for social images using geo-visual ranking. IEEE Transactions on Multimedia.
  • Xu, M., Li, X., Xianyu, H., Tian, J., Meng, F., & Chen, W. (2015). Multi-Scale Approaches to the MediaEval 2015" Emotion in Music" Task. MediaEval Working Notes Proceedings.
  • Pellegrini, T., & Barriere, V. (2015). Time-continuous estimation of emotion in music with recurrent neural networks. MediaEval Working Notes Proceedings.
  • Chakraborty, R., Maurya, A. K., Pandharipande, M., Hassan, E., Ghosh, H., & Kopparapu, S. K. (2015). TCS-ILAB-MediaEval 2015: Affective Impact of Movies and Violent Scene Detection. MediaEval Working Notes Proceedings.
  • Kordopatis-Zilos, G., Popescu, A., Papadopoulos, S., & Kompatsiaris, Y. (2015). CERTH/CEA LIST at MediaEval Placing Task 2015. MediaEval Working Notes Proceedings.
  • Patra, B. G., Maitra, P., Das, D., & Bandyopadhyay, S. (2015). MediaEval 2015: Music Emotion Recognition based on Feed-Forward Neural Network. MediaEval Working Notes Proceedings.
  • Mironica, I., Ionescu, B., Sjöberg, M., Schedl, M., & Skowron, M. (2015). RFA at MediaEval 2015 Affective Impact of Movies Task: A Multimodal Approach. MediaEval Working Notes Proceedings.
  • Sutcliffe, R., Crawford, T., Fox, C., Root, D. L., & Hovy, E. (2015). Relating natural language text to musical passages. MediaEval Working Notes Proceedings.
  • Ward, N. G., Werner, S. D., Garcia, F., & Sanchis, E. (2015). A prosody-based vector-space model of dialog activity for information retrieval. Speech Communication.
  • Chmulik, M., Guoth, I., Malik, M., & Jarina, R. (2015). UNIZA System for the" Emotion in Music" task at MediaEval 2015. MediaEval Working Notes Proceedings.
  • Zaharieva, M., Fabro, M. D., & Zeppelzauer, M. (2015). Cross-platform social event detection. IEEE MultiMedia.
  • Massana, M. À. I. (2015). UPC system for the 2015 MediaEval multimodal person discovery in broadcast TV task. MediaEval Working Notes Proceedings.
  • Kelm, P., Schmiedeke, S., & Goldmann, L. (2015). Imcube@ MediaEval 2015 Placing Task: Hierarchical Approach for Geo-referencing Large-Scale Datasets. MediaEval Working Notes Proceedings.
  • Acar, E., Irrgang, M., Maniry, D., & Hopfgartner, F. (2015). Detecting violent content in hollywood movies and user-generated videos. Smart Information Systems.
  • Mironică, I., Duta, I., Ionescu, B., & Sebe, N. (2015). Beyond bag-of-words: Fast video classification with fisher kernel vector of locally aggregated descriptors. IEEE International Conference on Multimedia and Expo (ICME).
  • Zhang, X., Ji, S., Wang, S., Li, Z., & Lv, X. (2015). Geographical topics learning of geo-tagged social images. IEEE Transactions on Cybernetics.
  • Racca, D. N., & Jones, G. J. F. (2015). Evaluating Search and Hyperlinking: An Example of the Design, Test, Refine Cycle for Metric Development. MediaEval Working Notes Proceedings.
  • Çiftçi, S., Korshunov, P., Akyüz, A. O., & Ebrahimi, T. (2015). Mediaeval 2015 drone protect task: Privacy protection in surveillance systems using false coloring. MediaEval Working Notes Proceedings.
  • Conci, N., Mezaris, V., Natale, F. G. B. D., & Matton, M. (2015). Synchronization of Multi-User Event Media at MediaEval 2015: Task Description, Datasets, and Evaluation. MediaEval Working Notes Proceedings.
  • Proença, J., Castela, L., & Perdigão, F. (2015). The SPL-IT-UC Query by Example Search on Speech system for MediaEval 2015. MediaEval Working Notes Proceedings.
  • Patra, B. G., Das, D., & Bandyopadhyay, S. (2015). Music emotion recognition system. ACM Transactions on Intelligent Systems and Technology (TIST).
  • Cai, K., Yang, W., Cheng, Y., Yang, D., & Chen, X. (2015). PKU-AIPL’Solution for MediaEval 2015 Emotion in Music Task. MediaEval Working Notes Proceedings.
  • Jin, Q., Li, X., Cao, H., Huo, Y., Liao, S., Yang, G., & Xu, J. (2015). RUCMM at MediaEval 2015 Affective Impact of Movies Task: Fusion of Audio and Visual Cues. MediaEval Working Notes Proceedings.
  • Gupta, R., Kumar, N., & Narayanan, S. (2015). Affect prediction in music using boosted ensemble of filters. IEEE European Signal Processing Conference (EUSIPCO).
  • Zhang, X., Hu, X., & Li, Z. (2015). Learning geographical hierarchy features for social image location prediction. International Joint Conference on Artificial Intelligence.
  • Eskevich, M., Nguyen, H., Sahuguet, M., & Huet, B. (2015). Hyper video browser: Search and hyperlinking in broadcast media. ACM International Conference on Multimedia.
  • Yang, Z., Li, Q., Lu, Z., Ma, Y., Gong, Z., & Pan, H. (2015). Semi-supervised multimodal clustering algorithm integrating label signals for social event detection. IEEE International Conference on Multimedia Big Data.
  • Badii, A., Korshunov, P., Oudi, H., Ebrahimi, T., Piatrik, T., Eiselein, V., Ruchaud, N., Fedorczak, C., Dugelay, J. L., & Vazquez, D. F. (2015). Overview of the MediaEval 2015 Drone Protect Task. MediaEval Working Notes Proceedings.
  • Larson, M., Kelm, P., Rae, A., Hauff, C., Thomee, B., Trevisiol, M., Choi, J., Van Laere, O., Schockaert, S., Jones, G. J. F., & others. (2015). The benchmark as a research catalyst: Charting the progress of geo-prediction for social multimedia. In Multimodal Location Estimation of Videos and Images (pp. 5–40). Springer.
  • Lopez-Otero, P., Docio-Fernandez, L., & Garcia-Mateo, C. (2015). GTM-UVigo systems for the Query-by-Example search on speech task at MediaEval 2015. MediaEval Working Notes Proceedings.
  • Li, L. T., Muñoz, J. A. V., Almeida, J., Calumby, R. T., Penatti, O. A. B., Dourado, I. C., Nogueira, K., Mendes-Junior, P. R., Pereira, L. A. M., Pedronette, D. C. G., & others. (2015). RECOD@ Placing Task of MediaEval 2015. MediaEval Working Notes Proceedings.
  • Moreira, D., de Avila, S. E. F., Perez, M., Moraes, D., Testoni, V., Valle, E., Goldenstein, S., & Rocha, A. (2015). RECOD at MediaEval 2015: Affective Impact of Movies Task. MediaEval Working Notes Proceedings.
  • Aljanaki, A., Wiering, F., & Veltkamp, R. C. (2015). MediaEval 2015: A Segmentation-based Approach to Continuous Emotion Tracking. MediaEval Working Notes Proceedings.
  • Popescu, A., Gadeski, E., & Borgne, H. L. (2015). Scalable domain adaptation of convolutional neural networks. ArXiv Preprint.
  • Galuščáková, P., & Pecina, P. (2015). Audio Information for Hyperlinking of TV Content. ACM Workshop on Speech, Language & Audio in Multimedia.
  • Maigrot, C., Claveau, V., Kijak, E., & Sicre, R. (2015). Multimedia Use task. In MediaEval Working Notes Proceedings.
  • Eskevich, M., & Huet, B. (2015). EURECOM@ SAVA2015: Visual Features for Multimedia Search. MediaEval Working Notes Proceedings.
  • Galuščáková, P., & Pecina, P. (2015). CUNI at MediaEval 2015 Search and Anchoring in Video Archives: Anchoring via Information Retrieval. MediaEval Working Notes Proceedings.
  • Lopez-Otero, P., Barros, R., Fernández, L. D., González-Agulla, E., Alba-Castro, J. L., & Garcia-Mateo, C. (2015). GTM-UVigo Systems for Person Discovery Task at MediaEval 2015. MediaEval Working Notes Proceedings.
  • Apostolidis, K., & Mezaris, V. (2015). Using photo similarity and weighted graphs for the temporal synchronization of event-centered multi-user photo collections. ACM International Workshop on Human-Centered Event Understanding from Multimedia.
  • Caranica, A., Buzo, A., Cucu, H., & Burileanu, C. (2015). SpeeD@ MediaEval 2015: Multilingual Phone Recognition Approach to Query by Example STD. MediaEval Working Notes Proceedings.
  • Skácel, M., & Szöke, I. (2015). BUT QUESST 2015 System Description. MediaEval Working Notes Proceedings.
  • Xu, B., & Fan, G. (2015). Multimodal topic modeling based geo-annotation for social event detection in large photo collections. IEEE International Conference on Image Processing (ICIP).
  • Ma, M., & Rosenberg, A. (2015). CUNY Systems for the Query-by-Example Search on Speech Task at MediaEval 2015. MediaEval Working Notes Proceedings.
  • Zaharieva, M., & Diem, L. (2015). MIS@ Retrieving Diverse Social Images Task 2015. MediaEval Working Notes Proceedings.
  • Liu, Y., Liu, Y., & Gu, Z. (2015). Affective Feature Extraction for Music Emotion Prediction. MediaEval Working Notes Proceedings.
  • Chen, X., Liu, H., Deng, Z. H., & Yang, Y. (2015). Retrieving Relevant and Diverse Image from Social Media Images. MediaEval Working Notes Proceedings.
  • Mantena, G. (2015). Query-by-example spoken term detection on low resource languages. PhD Thesis.
  • Vliegendhart, R., Liem, C. C. S., & Larson, M. (2015). Exploring microblog activity for the prediction of hyperlink anchors in television broadcasts. MediaEval Working Notes Proceedings.
  • Nishi, F., Inoue, N., & Shinoda, K. (2015). Combining Audio Features and Visual I-Vector@ MediaEval 2015 Multimodal Person Discovery in Broadcast TV. MediaEval Working Notes Proceedings.
  • Katsiavalos, A., & Collins, T. (2015). DMUN at the MediaEval 2015 C@merata Task: The Stravinsqi Algorithm. MediaEval Working Notes Proceedings.
  • Imbrasaite, V. (2015). Continuous dimensional emotion tracking in music. PhD Thesis.
  • Gupta, R., & Narayanan, S. S. (2015). Predicting Affect in Music Using Regression Methods on Low Level Features. MediaEval Working Notes Proceedings.
  • Asooja, K., Ernala, S. K., & Buitelaar, P. (2015). UNLP at the MediaEval 2014 C@merata Task. MediaEval Working Notes Proceedings.
  • Zaharieva, M., Zeppelzauer, M., Fabro, M. D., & Schopfhauser, D. (2015). Social event mining in large photo collections. ACM International Conference on Multimedia Retrieval.
  • Laguna, S., Calvo, M., Hurtado, L. F., & Sanchis, E. (2015). ELiRF at MediaEval 2015: Query by Example Search on Speech Task (QUESST). MediaEval Working Notes Proceedings.
  • Markov, K., & Matsui, T. (2015). Speech and music emotion recognition using Gaussian processes. Modern Methodology and Applications in Spatial-Temporal Modeling.
  • Nguyen, D. D., Dao, M. S., & Nguyen, T. V. T. (2015). Natural language processing for social event classification. Knowledge and Systems Engineering.
  • Polous, K., Freitag, A., Krisp, J., Meng, L., & Singh, S. (2015). A general framework for event detection from social media. Advances in Spatial Data Handling and Analysis.
  • Chen, S., Curtis, K., Racca, D. N., Zhou, L., Jones, G. J. F., & O’Connor, N. E. (2015). DCU ADAPT@ TRECVid 2015: Video Hyperlinking Task. TRECVID Proceedings.
  • Gravier, G., Jones, G. F., Larson, M., & Ordelman, R. (2015). Overview of the 2015 workshop on speech, language and audio in multimedia. ACM International Conference on Multimedia.
  • Fassold, H., Stiegler, H., Lee, F., & Bailer, W. (2015). JRS at Synchronization of Multi-user Event Media Task. MediaEval Working Notes Proceedings.
  • Bendris, M., Charlet, D., Senay, G., Kim, M. Y., Favre, B., Rouvier, M., Bechet, F., & Damnati, G. (2015). PERCOLATTE: A Multimodal Person Discovery System in TV Broadcast for the Medieval 2015 Evaluation Campaign. MediaEval Working Notes Proceedings.
  • Poignant, J., Bredin, H., & Barras, C. (2015). Limsi at mediaeval 2015: Person discovery in broadcast tv task. MediaEval Working Notes Proceedings.
  • Budnik, M., Safadi, B., Besacier, L., Quénot, G., Khodabakhsh, A., & Demiroglu, C. (2015). Lig at mediaeval 2015 multimodal person discovery in broadcast tv task. MediaEval Working Notes Proceedings.
  • Kini, N. (2015). TNKG at the MediaEval 2015 C@merata Task. MediaEval Working Notes Proceedings.
  • Wan, S. (2015). CLAS at the MediaEval 2015 C@merata Task. MediaEval Working Notes Proceedings.
  • Ma, Y., Li, Q., Yang, Z., Lu, Z., Pan, H., & Chan, A. B. (2015). An SVD-based Multimodal Clustering method for Social Event Detection. IEEE International Conference on Data Engineering Workshops.
  • Vavrek, J., Viszlay, P., Lojka, M., Pleva, M., Juhár, J., & Rusko, M. (2015). TUKE at MediaEval 2015 QUESST. MediaEval Working Notes Proceedings.
  • Tulsiani, H., & Rao, P. (2015). The IIT-B Query-by-Example System for MediaEval 2015. MediaEval Working Notes Proceedings.
  • Dang-Nguyen, D. T., Boato, G., Natale, F. G. B. D., Piras, L., Giacinto, G., Tuveri, F., Angioni, M., & others. (2015). Multimodal-based Diversified Summarization in Social Image Retrieval. MediaEval Working Notes Proceedings.
  • Zhang, X., Li, Z., Wang, S., Yang, Y., & Lv, X. (2015). Location prediction of social images via generative model. International Conference on Multimedia Retrieval.
  • Chin, Y. H., & Wang, J. C. (2015). MediaEval 2015: Recurrent Neural Network Approach to Emotion in Music Tack. MediaEval Working Notes Proceedings.
  • Spyromitros-Xioufis, E., Popescu, A., Papadopoulos, S., & Kompatsiaris, I. (2015). Usemp: Finding diverse images at mediaeval 2015. MediaEval Working Notes Proceedings.
  • Ginsca, A. L. (2015). Leveraging large scale Web data for image retrieval and user credibility estimation. PhD Thesis.
  • Paróczi, Z., Kis-Király, M., & Fodor, B. (2015). DCLab at MediaEval 2015 Retrieving Diverse Social Images Task. MediaEval Working Notes Proceedings.
  • Takamu, K., Hang, N. D., & Yanai, K. (2015). Twitter event photo detection using both geotagged tweets and non-geotagged photo tweets. Pacific Rim Conference on Multimedia.
  • Portelo, J. M. L. (2015). Privacy-preserving frameworks for speech mining. PhD Thesis.
  • Schmiedeke, S., Kelm, P., & Goldmann, L. (2015). Imcube@ MediaEval 2015 DroneProtect Task: Reversible Masking using Steganography. MediaEval Working Notes Proceedings.
  • Zaharieva, M., & Riegler, M. (2015). Media Synchronization and Sub-Event Detection in Multi-User Image Collections. International Workshop on Human-Centered Event Understanding from Multimedia.
  • Kuang, H., Zhu, S., & Saddik, A. E. (2015). Boosting Prediction of Geo-location for Web Images Through Integrating Multiple Knowledge Sources. ACM International Conference on Multimedia Retrieval.
  • Spyromitros-Xioufis, E., Papadopoulos, S., Ginsca, A. L., Popescu, A., Kompatsiaris, Y., & Vlahavas, I. (2015). Improving Diversity in Image Search via Supervised Relevance Scoring.
  • Khokher, M. R., Bouzerdoum, A., & Phung, S. L. (2015). Violent scene detection using a super descriptor tensor decomposition. ACM International Conference on Multimedia Retrieval.
  • Chung, C. T., & Chen, Y.-de. (2015). NTU System at MediaEval 2015: Zero Resource Query by Example Spoken Term Detection using Deep and Recurrent Neural Networks. MediaEval Working Notes Proceedings.
  • Skácel, M. (2015). Query-by-Example Spoken Term Detection. Proceedings of Excel@ FIT.
  • Caranica, A., Cucu, H., Buzo, A., & Burileanu, C. (2015). Exploring Spoken Term Detection with a Robust Multi-Language Phone Recognition System.
  • Gygli, M., & Gool, L. V. (2015). ETH-CVL@ MediaEval 2015: Learning Objective Functions for Improved Image Retrieval. MediaEval Working Notes Proceedings.
  • Markov, K., & Matsui, T. (2015). Dynamic Music Emotion Recognition Using Kernel Bayes’ Filter. MediaEval Working Notes Proceedings.
  • Ekambaram, V., Ramchandran, K., Choi, J., & Friedland, G. (2015). Collaborative Multimodal Location Estimation of Consumer Media. Multimodal Location Estimation of Videos and Images.
  • Lei, H., Choi, J., & Friedland, G. (2015). Application of Large-Scale Classification Techniques for Simple Location Estimation Experiments. Multimodal Location Estimation of Videos and Images.
  • Rosani, A. (2015). Multimedia Content Analysis for Event Detection. PhD Tesis.
  • Lidon, A., Nieto, X. G., Bolaños, M., Radeva, P., Seidl, M., & Zeppelzauer, M. (2015). UPC-UB-STP@ MediaEval 2015 diversity task: iterative reranking of relevant images. MediaEval Working Notes Proceedings.
  • Agrawal, T., Gupta, R., & Narayanan, S. (2015). Retrieving Social Images using Relevance Filtering and Diverse Selection. MediaEval Working Notes Proceedings.
  • Dudy, S., & Bedrick, S. (2015). OHSU@ MediaEval 2015: Adapting Textual Techniques to Multimedia Search. MediaEval Working Notes Proceedings.
  • Schmiedeke, S., Kelm, P., & Goldmann, L. (2015). Imcube@ MediaEval 2015 Retrieving Diverse Social Images Task: Multimodal Filtering and Re-ranking. MediaEval Working Notes Proceedings.
  • Abebe, M. A., Getahun, F., Asres, S., & Chbeir, R. (2015). Event extraction for collective knowledge in multimedia digital EcoSystem. AFRICON.
  • Eskevich, M., Bui, Q. M., Le, H. A., & Huet, B. (2015). Exploring Video Hyperlinking in Broadcast Media. Workshop on Speech, Language & Audio in Multimedia.
  • Markov, K., & Matsui, T. (2014). Music genre and emotion recognition using Gaussian processes. IEEE Access, 2, 688–697.
  • Eskevich, M., Aly, R., Racca, D., Ordelman, R., Chen, S., & Jones, G. J. F. (2014). The search and hyperlinking task at MediaEval 2014. MediaEval Working Notes Proceedings.
  • Ionescu, B., Gansca, A. L., Boteanu, B., Popescu, A., Lupu, M., & Müller, H. (2014). Retrieving Diverse Social Images at MediaEval 2014: Challenge, Dataset and Evaluation. MediaEval Working Notes Proceedings.
  • Rodriguez-Fuentes, L. J., Varona, A., Penagarikano, M., Bordel, G., & Diez, M. (2014). High-performance query-by-example spoken term detection on the SWS 2013 evaluation. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
  • Anguera, X., Rodriguez-Fuentes, L. J., Söke, I., Buzo, A., & Metze, F. (2014). Query by Example Search on Speech at Mediaeval 2014. MediaEval Working Notes Proceedings.
  • Metze, F., Anguera, X., Barnard, E., Davel, M., & Gravier, G. (2014). Language independent search in MediaEval’s Spoken Web Search task. Computer Speech and Language.
  • Safadi, B., Sahuguet, M., & Huet, B. (2014). When textual and visual information join forces for multimedia retrieval. ACM International Conference on Multimedia Retrieval.
  • Söke, I., Bürget, L., Grézl, F., Černocky, J. H., & Ondel, L. (2014). Calibration and fusion of query-by-example systems - BUT SWS 2013. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
  • Petkos, G., Papadopoulos, S., Mezaris, V., & Kompatsiaris, Y. (2014). Social Event Detection at MediaEval 2014: Challenges, Datasets, and Evaluation. MediaEval Working Notes Proceedings.
  • Anguera, X., Rodriguez-Fuentes, L. J., Söke, I., Buzo, A., Metze, F., & Penagarikano, M. (2014). Query-by-example spoken term detection evaluation on low-resource languages. Spoken Language Technologies for Under-Resourced Languages.
  • Söke, I., Skácel, M., & Burget, L. (2014). BUT QUESST 2014 system description. MediaEval Working Notes Proceedings.
  • Dang-Nguyen, D. T., Piras, L., Giacinto, G., Boato, G., & Natale, F. G. B. D. (2014). Retrieval of Diverse Images by Pre-filtering and Hierarchical Clustering. MediaEval Working Notes Proceedings.
  • Petkos, G., Papadopoulos, S., Schinas, E., & Kompatsiaris, Y. (2014). Graph-based multimodal clustering for social event detection in large collections of images. International Conference on Multimedia Modeling.
  • Apostolidis, E., Mezaris, V., Sahuguet, M., Huet, B., Červenková, B., Stein, D., Eickeler, S., Garcia, J. L. R., Troncy, R., & Pikora, L. (2014). Automatic fine-grained hyperlinking of videos within a closed collection using scene segmentation. ACM International Conference on Multimedia.
  • Coutinho, E., Weninger, F., Schuller, B. W., & Scherer, K. R. (2014). The Munich LSTM-RNN Approach to the MediaEval 2014 Emotion in Music Task. MediaEval Working Notes Proceedings.
  • Yang, P., Xu, H., Xiao, X., Xie, L., Leung, C. C., Chen, H., Yu, J., Lv, H., Wang, L., Leow, S. J., & others. (2014). The NNI Query-by-Example System for MediaEval 2014. MediaEval Working Notes Proceedings.
  • Lam, V., Le, D. D., Phan, S., Satoh, S., & Duong, D. A. (2014). NII-UIT at MediaEval 2014 Violent Scenes Detection Affect Task. MediaEval Working Notes Proceedings.
  • Dai, Q., Wu, Z., Jiang, Y. G., Xue, X., & Tang, J. (2014). Fudan-NJUST at MediaEval 2014: Violent Scenes Detection Using Deep Neural Networks. MediaEval Working Notes Proceedings.
  • Mantena, G., & Prahallad, K. (2014). Use of articulatory bottle-neck features for query-by-example spoken term detection in low resource scenarios. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
  • Kumar, N., Gupta, R., Guha, T., Vaz, C., Segbroeck, M. V., Kim, J., & Narayanan, S. S. (2014). Affective Feature Design and Predicting Continuous Affective Dimensions from Music. MediaEval Working Notes Proceedings.
  • Ionescu, B. E., Seyerlehner, K., Mironică, I., Vertan, C., & Lambert, P. (2014). An audio-visual approach to web video categorization. Multimedia Tools and Applications.
  • Ahsan, U., & Essa, I. (2014). Clustering social event images using kernel canonical correlation analysis. IEEE Conference on Computer Vision and Pattern Recognition Workshops.
  • Avila, S., Moreira, D., Perez, M., Moraes, D., Cota, I., Testoni, V., Valle, E., Goldenstein, S., Rocha, A., & others. (2014). RECOD at MediaEval 2014: Violent scenes detection task. MediaEval Working Notes Proceedings.
  • Li, L. T., Pedronette, D. C. G., Almeida, J., Penatti, O. A. B., Calumby, R. T., & Torres, R. S. (2014). A rank aggregation framework for video multimodal geocoding. Multimedia Tools and Applications.
  • Apostolidis, K., Papagiannopoulou, C., & Mezaris, V. (2014). CERTH at MediaEval 2014 Synchronization of Multi-User Event Media Task. MediaEval Working Notes Proceedings.
  • Zhang, B., Yi, Y., Wang, H., & Yu, J. (2014). MIC-TJU at MediaEval Violent Scenes Detection (VSD) 2014. MediaEval Working Notes Proceedings.
  • Loni, B., Cheung, L. Y., Riegler, M., Bozzon, A., Gottlieb, L., & Larson, M. (2014). Fashion 10000: an enriched social image dataset for fashion and clothing. Proceedings of the 5th Acm Multimedia Systems Conference, 41–46.
  • Bhatt, C., Pappas, N., Habibi, M., & Popescu-Belis, A. (2014). Multimodal reranking of content-based recommendations for hyperlinking video snippets. ACM International Conference on Multimedia Retrieval.
  • do Nascimento Teixeira, B. (2014). Mtm at mediaeval 2014 violence detection task. MediaEval Working Notes Proceedings.
  • Boteanu, B., Mironică, I., & Ionescu, B. (2014). A relevance feedback perspective to image search result diversification. International Conference on Intelligent Computer Communication and Processing (ICCP).
  • Sjöberg, M., Mironica, I., Schedl, M., & Ionescu, B. (2014). FAR at MediaEval 2014 Violent Scenes Detection: A Concept-based Fusion Approach. MediaEval Working Notes Proceedings.
  • Castán, D., Rodríguez, M., Ortega, A., Orrite, C., & Lleida, E. (2014). ViVoLab and CVLab-MediaEval 2014: Violent Scenes Detection Affect Task. MediaEval Working Notes Proceedings.
  • Derbas, N., & Quénot, G. (2014). Joint audio-visual words for violent scenes detection in movies. ACM International Conference on Multimedia Retrieval.
  • Proença, J., Veiga, A., & Perdigao, F. (2014). The SPL-IT Query by Example Search on Speech system for MediaEval 2014. MediaEval Working Notes Proceedings.
  • Sutcliffe, R. F. E., Crawford, T., Fox, C., Root, D. L., & Hovy, E. (2014). Shared evaluation of natural language queries against classical music scores: A full description of the C@merata 2014 task. MediaEval Working Notes Proceedings.
  • Galuščáková, P., & Pecina, P. (2014). Experiments with segmentation strategies for passage retrieval in audio-visual documents. ACM International Conference on Multimedia Retrieval.
  • Sutanto, T., & Nayak, R. (2014). Ranking Based Clustering for Social Event Detection. MediaEval Working Notes Proceedings.
  • Rodríguez-Fuentes, L. J., Varona, A., Penagarikano, M., Bordel, G., & Diez, M. (2014). GTTS-EHU Systems for QUESST at MediaEval 2014. MediaEval Working Notes Proceedings.
  • Chen, S., Jones, G. J. F., & O’Connor, N. E. (2014). Dcu linking runs at mediaeval 2014: search and hyperlinking task. MediaEval Working Notes Proceedings.
  • Loni, B., Hare, J., Georgescu, M., Riegler, M., Zhu, X., Morchid, M., Dufour, R., & Larson, M. (2014). Getting by with a little help from the crowd: Practical approaches to social image labeling. ACM Workshop on Crowdsourcing for Multimedia.
  • Zaharieva, M., Schopfhauser, D., Fabro, M. D., & Zeppelzauer, M. (2014). Clustering and Retrieval of Social Events in Flickr. MediaEval Working Notes Proceedings.
  • Spyromitros-Xioufis, E., Papadopoulos, S., Kompatsiaris, Y., & Vlahavas, I. (2014). Socialsensor: Finding diverse images at mediaeval 2014. MediaEval Working Notes Proceedings.
  • Ionescu, B., Popescu, A., Muller, H., Menendez, M., & Radu, A. L. (2014). Benchmarking result diversification in social image retrieval. IEEE International Conference on Image Processing (ICIP).
  • Goto, S., & Aoki, T. (2014). Violent scenes detection using mid-level violence clustering. Computer Science CSCP.
  • Fan, Y., & Xu, M. (2014). MediaEval 2014: THU-HCSIL Approach to Emotion in Music Task using Multi-level Regression. MediaEval Working Notes Proceedings.
  • Ginsca, A. L., Lupu, M., & Popescu, A. (2014). User Context Mining Module. MUCKE Project Deliverable.
  • Pournaras, A., Mezaris, V., Stein, D., Eickeler, S., & ... (2014). LinkedTV at MediaEval 2014 Search and Hyperlinking Task. MediaEval Working Notes Proceedings.
  • Galuščáková, P., & Pecina, P. (2014). CUNI at MediaEval 2014 search and hyperlinking task: Search task experiments. MediaEval Working Notes Proceedings.
  • Acar, E., & Albayrak, S. (2014). TUB-IRML at MediaEval 2014 Violent Scenes Detection Task: Violence Modeling through Feature Space Partitioning. MediaEval Working Notes Proceedings.
  • Gînsca, A. L., Popescu, A., & Rekabsaz, N. (2014). CEA LIST’s Participation at the MediaEval 2014 Retrieving Diverse Social Images Task. MediaEval Working Notes Proceedings.
  • Buzo, A., Cucu, H., & Burileanu, C. (2014). SpeeD@ MediaEval 2014: Spoken Term Detection with Robust Multilingual Phone Recognition. MediaEval Working Notes Proceedings.
  • Racca, D., & Jones, G. J. F. (2014). Dcu search runs at MediaEval 2014 search and hyperlinking. MediaEval Working Notes Proceedings.
  • Gracia, C., Anguera, X., & Binefa, X. (2014). Combining temporal and spectral information for Query-by-Example Spoken Term Detection. IEEE European Signal Processing Conference (EUSIPCO).
  • Anguera, X., Rodriguez-Fuentes, L. J., Szőke, I., Buzo, A., Metze, F., & Penagarikano, M. (2014). Query-by-example spoken term detection on multilingual unconstrained speech. Annual Conference of the International Speech Communication Association.
  • Fradi, H., Yan, Y., & Dugelay, J. L. (2014). Privacy Protection Filter Using Shape and Color Cues. MediaEval Working Notes Proceedings.
  • Riga, M., Petkos, G., Papadopoulos, S., Schinas, M., & ... (2014). CERTH@ MediaEval 2014 Social Event Detection Task. MediaEval Working Notes Proceedings.
  • Calumby, R. T., Santana, V. P., Cordeiro, F. S., Penatti, O. A. B., Li, L. T., Chiachia, G., Torres, R. S., & others. (2014). Recod@ MediaEval 2014: diverse social images retrieval. MediaEval Working Notes Proceedings.
  • Bailer, W., Weiss, W., Schober, C., & Thallinger, G. (2014). Browsing linked video collections for media production. International Conference on Multimedia Modeling.
  • Galuščáková, P., Kruliš, M., Lokoč, J., & Pecina, P. (2014). Cuni at mediaeval 2014 search and hyperlinking task: visual and prosodic features in hyperlinking. MediaEval Working Notes Proceedings.
  • Collins, T. (2014). Stravinsqi/De Montfort University at the MediaEval 2014 C@merata Task. MediaEval Working Notes Proceedings.
  • Erdélyi, Á., Winkler, T., & Rinner, B. (2014). Multi-Level Cartooning for Context-Aware Privacy Protection in Visual Sensor Networks. MediaEval Working Notes Proceedings.
  • Sansone, E., Boato, G., & Dao, M. S. (2014). Synchronizing Multi-User Photo Galleries with MRF. MediaEval Working Notes Proceedings.
  • Kesiraju, S., Mantena, G. V., & Prahallad, K. (2014). IIIT-H System for MediaEval 2014 QUESST. MediaEval Working Notes Proceedings.
  • Calvo, M., Giménez, M., Hurtado, L. F., Arnal, E. S., & Gómez, J. A. (2014). ELiRF at MediaEval 2014: Query by Example Search on Speech Task (QUESST). MediaEval Working Notes Proceedings.
  • Bailer, W., Lokaj, M., & Stiegler, H. (2014). Context in Video Search: Is Close-by Good Enough When Using Linking? ACM International Conference on Multimedia Retrieval.
  • Simon, A. R., Gravier, G., Sébillot, P., & Moens, M. F. (2014). IRISA and KUL at MediaEval 2014: Search and hyperlinking task. MediaEval Working Notes Proceedings.
  • Zaharieva, M., Riegler, M., & Fabro, M. D. (2014). Multimodal Synchronization of Image Galleries. MediaEval Working Notes Proceedings.
  • Denman, S., Dean, D., Fookes, C., & Sridharan, S. (2014). SAIVT-ADMRG@ mediaeval 2014 social event detection. MediaEval Working Notes Proceedings.
  • Spampinato, C., & Palazzo, S. (2014). PeRCeiVe Lab@ UNICT at MediaEval 2014 Diverse Images: Random Forests for Diversity-based Clustering. MediaEval Working Notes Proceedings.
  • Markov, K., & Matsui, T. (2014). Dynamic Music Emotion Recognition Using State-Space Models. MediaEval Working Notes Proceedings.
  • Palotti, J. R. M., Rekabsaz, N., Lupu, M., & Hanbury, A. (2014). TUW@ Retrieving Diverse Social Images Task 2014. MediaEval Working Notes Proceedings.
  • Manchon-Vizuete, D., Gris-Sarabia, I., & Nieto, X. G. (2014). Photo clustering of social events by extending PhotoTOC to a rich context. ICMR Workshop on Social Events in Web Multimedia.
  • Dao, M. S., Duong, A. D., & Natale, F. G. D. (2014). Unsupervised social media events clustering using user-centric parallel split-n-merge algorithms. International Conference on Acoustics, Speech and Signal Processing (ICASSP).
  • Wan, S. (2014). The CLAS System at the MediaEval 2014 C@merata Task. MediaEval Working Notes Proceedings.
  • Aljanaki, A., Soleymani, M., Wiering, F., & Veltkamp, R. (2014). Mediaeval 2014: A multimodal approach to drop detection in electronic dance music. MediaEval Working Notes Proceedings.
  • Nowak, P., Thaler, M., Stiegler, H., & Bailer, W. (2014). JRS at Event Synchronization Task. MediaEval Working Notes Proceedings.
  • Wang, H., & Lee, T. (2014). CUHK System for QUESST Task of MediaEval 2014. MediaEval Working Notes Proceedings.
  • Yang, W., Cai, K., Wu, B., Wang, Y., Chen, X., Yang, D., & Horner, A. (2014). Beatsens’ Solution for MediaEval 2014 Emotion in Music Task. MediaEval Working Notes Proceedings.
  • Paróczi, Z., Fodor, B., & Szücs, G. (2014). DCLab at MediaEval2014 Search and Hyperlinking Task. MediaEval Working Notes Proceedings.
  • Simon, A. R., Gravier, G., & Sébillot, P. (2014). IRISA at MediaEval 2015: Search and Anchoring in Video Archives Task. MediaEval Working Notes Proceedings.
  • Kini, N. (2014). TCSL at the MediaEval 2014 C@merata Task. MediaEval Working Notes Proceedings.
  • Korshunov, P., & Ebrahimi, T. (2014). Mediaeval 2014 visual privacy task: geometrical privacy protection tool. MediaEval Working Notes Proceedings.
  • Mousselly-Sergieh, H., Watzinger, D., Huber, B., Döller, M., Egyed-Zsigmond, E., & Kosch, H. (2014). World-Wide Scale Geotagged Image Dataset for Automatic Image Annotation and Reverse Geotagging. ACM Multimedia Systems Conference.
  • Hanbury, A., Lupu, M., Duygulu, P., Popescu, A., & Iftene, A. (2014). User-Centred Image Retrieval Model. MUCKE Project Deliverable.
  • Gracia, C., Anguera, X., & Binefa, X. (2014). Combining temporal and spectral information for Query-by-Example Spoken Term Detection. European Signal Processing Conference (EUSIPCO).
  • Paralic, M., & Jarina, R. (2014). UNIZA@ Mediaeval 2014 Visual Privacy Task: Object Transparency Approach. MediaEval Working Notes Proceedings.
  • Schmiedeke, S., Kelm, P., Goldmann, L., & Sikora, T. (2014). TUB@ MediaEval 2014 Visual Privacy Task: Reversible Scrambling on Foreground Masks. MediaEval Working Notes Proceedings.
  • Hare, J., Dupplaw, D., Lewis, P., Hall, W., & Martinez, K. (2014). Exploiting multimedia in creating and analysing multimedia Web archives. Future Internet.
  • Guinaudeau, C., Laurent, A., & Bredin, H. (2014). LIMSI@ MediaEval SED 2014. MediaEval Working Notes Proceedings.
  • Paróczi, Z., Fodor, B., & Szücs, G. (2014). Re-Ranking the Image Search Results for Relevance and Diversity in MediaEval 2014 Challenge. MediaEval Working Notes Proceedings.
  • Imbrasaite, V., & Robinson, P. (2014). Music Emotion Tracking with Continuous Conditional Neural Fields and Relative Representation. MediaEval Working Notes Proceedings.
  • Vandersmissen, B., Tomar, A., Godin, F., Neve, W. D., & de Walle, R. V. (2014). Ghent University-iMinds at MediaEval 2014 Diverse Images: Adaptive Clustering with Deep Features. MediaEval Working Notes Proceedings.
  • Sarac, M. I., & Duygulu, P. (2014). Bilkent-RETINA at retrieving diverse social images task of MediaEval 2014. MediaEval Working Notes Proceedings.
  • Zaharieva, M., & Schwab, P. (2014). A Unified Framework for Retrieving Diverse Social Images. MediaEval Working Notes Proceedings.
  • Rosani, A., Boato, G., & Natale, F. G. B. D. (2014). Eventmask: a gamebased analysis of event-related saliency in photo galleries. Proceedings of the IEEE ICASSP, Show and Tell.
  • Chiu, J., & Rudnicky, A. (2014). LACS System analysis on retrieval models for the MediaEval 2014 Search and Hyperlinking Task. MediaEval Working Notes Proceedings.
  • Morchid, M., Dufour, R., & Linares, G. (2014). A Combined Thematic and Acoustic Approach for a Music Recommendation Service in TV Commercials. ISMIR.
  • Wan, S. (2014). A description of the CLAS system at C@merata 2014. MediaEval Working Notes Proceedings.
  • Pantoja, C., & Izquierdo, E. (2014). MediaEval 2014 Visual Privacy Task: De-identification and Re-identification of Subjects in CCTV. MediaEval Working Notes Proceedings.
  • Maniry, D., Acar, E., & Albayrak, S. (2014). TUB-IRML at MediaEval 2014 Visual Privacy Task: Privacy Filtering through Blurring and Color Remapping. MediaEval Working Notes Proceedings.
  • Goto, S., & Aoki, T. (2014). Violent Scenes Detection based on Automatically-generated Mid-level Violent Concepts. Computer Vision Winter Workshop.
  • Vavrek, J., Viszlay, P., Lojka, M., Pleva, M., & Juhár, J. (2014). TUKE System for MediaEval 2014 QUESST. MediaEval Working Notes Proceedings.
  • Ruocco, M. (2014). Geo-Temporal Mining and Searching of Events from Web-based Image Collections. PhD Dissertation.
  • Simon, A. R., Guinaudeau, C., Sébillot, P., & Gravier, G. (2014). Investigating domain-independent NLP techniques for precise target selection in video hyperlinking. ISCA/IEEE Workshop on Speech, Language and Audio in Multimedia.
  • Safadi, B., Sahuguet, M., & Huet, B. (2014). Linking text and visual concepts semantically for cross modal multimedia search. International Conference on Image Processing (ICIP).
  • Kumar, N., & Narayanan, S. S. (2014). Detection of Musical Event Drop from Crowdsourced Annotations Using a Noisy Channel Model. MediaEval Working Notes Proceedings.
  • Maidín, D. Ó. (2014). OMDN at the MediaEval 2014 C@merata Task. MediaEval Working Notes Proceedings.
  • Weiland, L., & Ponzetto, S. P. (2014). DWS at MediaEval 2014 Retrieving Diverse Social Images: Approaches for Visual and Textual Runs. MediaEval Working Notes Proceedings.
  • Terumasa, A., & Shinichi, G. (2014). Automatic Mid-Level Concepts Clustering for Violent Movie Scenes Detection. Journal of Mathematics and System Science.
  • Derbas, N., & Quénot, G. (2014). Joint Audio-Visual Words for Violent Scenes Detection in Movies. ACM International Conference on Multimedia Retrieval.
  • Lin, T. L. (2014). A mutimodal framework for geocoding digital objects.
  • Khan, W. (2014). A Novel Approach for Continuous Speech Tracking and Dynamic Time Warping. Adaptive Framing Based Continuous Speech Similarity Measure and Dynamic Time. PhD Dissertation.
  • Boteanu, B., Mironica, I., Radu, A. L., & Ionescu, B. (2014). LAPI@ 2014 Retrieving Diverse Social Images Task: A Relevance Feedback Diversification Perspective. MediaEval Working Notes Proceedings.
  • Simon, A. R., Gravier, G., Sébillot, P., & IRISA, M. F. M. (2014). Hyperlinking Task. MediaEval Working Notes Proceedings.
  • Karamti, H., Tmar, M., & Gargouri, F. (2014). MIRACL’s participation at MediaEval 2014 Retrieving Diverse Social Images Task. MediaEval Working Notes Proceedings.
  • Bailer, W., & Stiegler, H. (2014). JRS at Search and Hyperlinking of Television Content Task. MediaEval Working Notes Proceedings.
  • Eyben, F., Weninger, F., Squartini, S., & Schuller, B. (2013). Real-life voice activity detection with lstm recurrent neural networks and an application to hollywood movies. IEEE International Conference on Acoustics, Speech and Signal Processing.
  • Reuter, T., Papadopoulos, S., Petkos, G., Mezaris, V., Kompatsiaris, Y., Cimiano, P., de Vries, C., & Geva, S. (2013). Social event detection at mediaeval 2013: Challenges, datasets, and evaluation. MediaEval Working Notes Proceedings.
  • Metze, F., Anguera, X., Barnard, E., & Gravier, G. (2013). The spoken web search task at MediaEval 2012. MediaEval Working Notes Proceedings.
  • Eskevich, M., Jones, G. J. F., Aly, R., Ordelman, R. J. F., Chen, S., Nadeem, D., Guinaudeau, C., Gravier, G., Sébillot, P., Nies, T. D., & others. (2013). Multimedia information seeking through search and hyperlinking. ACM International Conference on Multimedia Retrieval.
  • Anguera, X., Metze, F., Buzo, A., Szoke, I., & Rodriguez-Fuentes, L. J. (2013). The spoken web search task. MediaEval Working Notes Proceedings.
  • Wang, H., Lee, T., Leung, C. C., Ma, B., & Li, H. (2013). Using parallel tokenizers with DTW matrix combination for low-resource spoken term detection. IEEE International Conference on Acoustics, Speech and Signal Processing.
  • Rodriguez-Fuentes, L. J., & Penagarikano, M. (2013). Mediaeval 2013 spoken web search task: System performance measures. Technical Report.
  • Anguera, X., & Ferrarons, M. (2013). Memory efficient subsequence DTW for query-by-example spoken term detection. IEEE International Conference on Multimedia and Expo (ICME).
  • Abad, A., Rodriguez-Fuentes, L. J., Penagarikano, M., Varona, A., & Bordel, G. (2013). On the calibration and fusion of heterogeneous spoken term detection systems. MediaEval Working Notes Proceedings.
  • Vavliakis, K. N., Symeonidis, A. L., & Mitkas, P. A. (2013). Event identification in web social media through named entity recognition and topic modeling. Data and Knowledge Engineering.
  • Saraclar, M., Sethy, A., Ramabhadran, B., Mangu, L., Cui, J., Cui, X., Kingsbury, B., & Mamou, J. (2013). An empirical study of confusion modeling in keyword search for low resource languages. IEEE Workshop on Automatic Speech Recognition and Understanding.
  • Laere, O. V., Schockaert, S., & Dhoedt, B. (2013). Georeferencing Flickr resources based on textual meta-data. Information Sciences.
  • Hauff, C. (2013). A study on the accuracy of Flickr’s geotag data. Proceedings of the International ACM SIGIR.
  • Ionescu, B., Schluter, J., Mironica, I., & Schedl, M. (2013). A naive mid-level concept-based fusion approach to violence detection in hollywood movies. ACM International Conference on Multimedia Retrieval.
  • Bao, B. K., Min, W., Lu, K., & Xu, C. (2013). Social event detection with robust high-order co-clustering. Proceedings of the 3rd ACM Conference On ….
  • Popescu, A., & Ballas, N. (2013). CEA LIST’s Participation at MediaEval 2013 Placing Task. MediaEval Working Notes Proceedings.
  • Lanchantin, P. K., Bell, P. J., Gales, M. J., Hain, T., Liu, X., Long, Y., Quinnell, J., Renals, S., Saz, O., Seigel, M. S., Swietojanski, P., & Woodland, P. C. (2013). Automatic transcription of multi-genre media archives.
  • Zaharieva, M., Zeppelzauer, M., & Breiteneder, C. (2013). Automated social event detection in large photo collections. ACM International Conference on Multimedia Retrieval.
  • Trevisiol, M., Jégou, H., Delhumeau, J., & Gravier, G. (2013). Retrieving geo-location of videos with a divide and conquer hierarchical multimodal approach. ACM International Conference on Multimedia Retrieval.
  • Chan, C., & Lee, L. (2013). Model-based unsupervised spoken term detection with spoken queries. IEEE Transactions on Audio, Speech, and Language.
  • Rodrı́guez-Fuentes LJ, Varona, A., Penagarikano, M., Bordel, G., & Diez, M. (2013). GTTS Systems for the SWS Task at MediaEval 2013. MediaEval Working Notes Proceedings.
  • Nguyen, T. V., Dao, M. S., Mattivi, R., Sansone, E., Natale, F. G. B. D., & Boato, G. (2013). Event Clustering and Classification from Social Media: Watershed-based and Kernel Methods. MediaEval Working Notes Proceedings.
  • Eyben, F., Weninger, F., Lehment, N., Schuller, B., & Rigoll, G. (2013). Affective video retrieval: Violence detection in Hollywood movies by large-scale segmental feature extraction. PloS One.
  • Sutanto, T., & Nayak, R. (2013). Admrg@ MediaEval 2013 social event detection. MediaEval Working Notes Proceedings.
  • Jain, N., Hare, J., Samangooei, S., Preston, J., Davies, J., Dupplaw, D., & Lewis, P. H. (2013). Experiments in diversifying flickr result sets. MediaEval Working Notes Proceedings.
  • Dai, Q., Tu, J., Shi, Z., Jiang, Y. G., & Xue, X. (2013). Fudan at MediaEval 2013: Violent Scenes Detection Using Motion Features and Part-Level Attributes. MediaEval Working Notes Proceedings.
  • Acar, E., Hopfgartner, F., & Albayrak, S. (2013). Violence detection in hollywood movies by the fusion of visual and mid-level audio cues. ACM International Conference on Multimedia.
  • Guinaudeau, C., Simon, A. R., Gravier, G., & Sébillot, P. (2013). HITS and IRISA at MediaEval 2013: Search and hyperlinking task. MediaEval Working Notes Proceedings.
  • Li, X., Larson, M., & Hanjalic, A. (2013). Geo-visual ranking for location prediction of social images. ACM International Conference on Multimedia Retrieval.
  • Tan, C. C., & Ngo, C. W. (2013). The Vireo Team at MediaEval 2013: Violent Scenes Detection by Mid-level Concepts Learnt from Youtube. MediaEval Working Notes Proceedings.
  • Derbas, N., Safadi, B., & Quénot, G. (2013). LIG at MediaEval 2013 Affect Task: Use of a Generic Method and Joint Audio-Visual Words. MediaEval Working Notes Proceedings.
  • Samangooei, S., Hare, J., Dupplaw, D., Niranjan, M., Gibbins, N., Lewis, P. H., Davies, J., Jain, N., & Preston, J. (2013). Social event detection via sparse multi-modal feature selection and incremental density based clustering. MediaEval Working Notes Proceedings.
  • Dao, M. S., Boato, G., Natale, F. G. B. D., & Nguyen, T. V. (2013). Jointly exploiting visual and non-visual information for event-related social media retrieval. ACM International Conference on Multimedia Retrieval.
  • Rafailidis, D., Semertzidis, T., Lazaridis, M., Strintzis, M. G., & Daras, P. (2013). A Data-Driven Approach for Social Event Detection. MediaEval Working Notes Proceedings.
  • Bhatt, C. A., Pappas, N., Habibi, M., & Popescu-Belis, A. (2013). Idiap at MediaEval 2013: Search and hyperlinking task. MediaEval Working Notes Proceedings.
  • Erdélyi, Á., Winkler, T., & Rinner, B. (2013). Serious Fun: Cartooning for Privacy Protection. MediaEval Working Notes Proceedings.
  • Sjöberg, M., Schlater, J., Ionescu, B., & Schedl, M. (2013). FAR at MediaEval 2013 Violent Scenes Detection: Concept-based Violent Scenes Detection in Movies. MediaEval Working Notes Proceedings.
  • Wistuba, M., & Schmidt-Thieme, L. (2013). Supervised Clustering of Social Media Streams. MediaEval Working Notes Proceedings.
  • Zeppelzauer, M., Zaharieva, M., & Fabro, M. D. (2013). Unsupervised Clustering of Social Events. MediaEval Working Notes Proceedings.
  • Papadopoulos, S., Schinas, E., Mezaris, V., Troncy, R., & Kompatsiaris, I. (2013). The 2012 social event detection dataset. ACM Multimedia Systems Conference.
  • Mironică, I., Ionescu, B., Knees, P., & Lambert, P. (2013). An in-depth evaluation of multimodal video genre categorization. IEEE International Workshop on Content-Based Multimedia Indexing (CBMI).
  • Corney, D., Martı́n CJ, Göker, A., Xioufis, E. S., Papadopoulos, S., Kompatsiaris, Y., Aiello, L. M., & Thomee, B. (2013). SocialSensor: Finding Diverse Images at MediaEval 2013. MediaEval Working Notes Proceedings.
  • Söke, I., Burget, L., Grézl, F., & Ondel, L. (2013). BUT SWS 2013-Massive Parallel Approach. MediaEval Working Notes Proceedings.
  • Penet, C., Demarty, C. H., Gravier, G., & Gros, P. (2013). Technicolor/inria team at the mediaeval 2013 violent scenes detection task. MediaEval Working Notes Proceedings.
  • Acar, E., Hopfgartner, F., & Albayrak, S. (2013). Detecting violent content in Hollywood movies by mid-level audio representations. IEEE International Workshop on Content-Based Multimedia Indexing (CBMI).
  • Brenner, M., & Izquierdo, E. (2013). MediaEval 2013: Social Event Detection, Retrieval and Classification in Collaborative Photo Collections. MediaEval Working Notes Proceedings.
  • Davies, J., Hare, J., Samangooei, S., Preston, J., Jain, N., Dupplaw, D., & Lewis, P. H. (2013). Identifying the geographic location of an image with a multimodal probability density function. MediaEval Working Notes Proceedings.
  • Wang, H., & Lee, T. (2013). The CUHK Spoken Web Search System for MediaEval 2013. MediaEval Working Notes Proceedings.
  • Preston, J., Hare, J., Samangooei, S., Davies, J., Jain, N., Dupplaw, D., & Lewis, P. H. (2013). A unified, modular and multimodal approach to search and hyperlinking video. MediaEval Working Notes Proceedings.
  • Anguera, X., Skácel, M., Vorwerk, V., & Luque, J. (2013). The Telefonica Research Spoken Web Search System for MediaEval 2013. MediaEval Working Notes Proceedings.
  • Nies, T. D., Neve, W. D., Mannens, E., & de Walle, R. V. (2013). Ghent University-iMinds at MediaEval 2013: An Unsupervised Named Entity-based Similarity Measure for Search and Hyperlinking. MediaEval Working Notes Proceedings.
  • Vizuete, D. M., & Nieto, X. G. (2013). Upc at mediaeval 2013 social event detection task. MediaEval Working Notes Proceedings.
  • Riegler, M., Lux, M., & Kofler, C. (2013). Frame the Crowd: Global Visual Features Labeling boosted with Crowdsourcing Information. MediaEval Working Notes Proceedings.
  • Bursuc, A., & Zaharia, T. B. (2013). ARTEMIS@ MediaEval 2013: A Content-Based Image Clustering Method for Public Image Repositories. MediaEval Working Notes Proceedings.
  • Buzo, A., Cucu, H., Molnar, I., Ionescu, B., & Burileanu, C. (2013). SpeeD@ MediaEval 2013: A Phone Recognition Approach to Spoken Term Detection. MediaEval Working Notes Proceedings.
  • Vavrek, J., Pleva, M., Lojka, M., Viszlay, P., Kiktová, E., Hládek, D., Juhár, J., Pleva, M., Kiktova, E., Hladek, D., & Jozef, J. (2013). TUKE at MediaEval 2013 Spoken Web Search Task. MediaEval Working Notes Proceedings.
  • Werner, S. D., & Ward, N. G. (2013). Evaluating Prosody-Based Similarity Models for Information Retrieval. MediaEval Working Notes Proceedings.
  • Cao, J. (2013). Photo Set Refinement and Tag Segmentation in Georeferencing Flickr Photos. MediaEval Working Notes Proceedings.
  • Vandersmissen, B., Tomar, A., Godin, F., Neve, W. D., & de Walle, R. V. (2013). Ghent University-iMinds at MediaEval 2013 Diverse Images: Relevance-Based Hierarchical Clustering. MediaEval Working Notes Proceedings.
  • Popescu, A. (2013). CEA LIST’s Participation at the MediaEval 2013 Retrieving Diverse Social Images Task. MediaEval Working Notes Proceedings.
  • Serrano, I., Déniz, O., & Garcı́a GB. (2013). VISILAB at MediaEval 2013: Fight Detection. MediaEval Working Notes Proceedings.
  • Garcı́a F, Sanchis, E., Calvo, M., Pla, F., & Hurtado, L. F. (2013). ELiRF at MediaEval 2013: Similar Segments in Social Speech Task. MediaEval Working Notes Proceedings.
  • Levow, G. A. (2013). UWCL at MediaEval 2013: Similar Segments in Social Speech Task. MediaEval Working Notes Proceedings.
  • Li, L. T., Almeida, J., Penatti, O. A. B., Calumby, R. T., Pedronette, D. C. G., Gonçalves, M. A., & Torres, R. S. (2013). Multimodal image geocoding: The 2013 RECOD’s approach. MediaEval Working Notes Proceedings.
  • Kuoman, C., Tollari, S., & Detyniecki, M. (2013). UPMC at MediaEval 2013: Relevance by Text and Diversity by Visual Clustering. MediaEval Working Notes Proceedings.
  • Gómez, J. A., Hurtado, L. F., Calvo, M., & Sanchis, E. (2013). ELiRF at MediaEval 2013: Spoken Web Search Task. MediaEval Working Notes Proceedings.
  • Mantena, G. V., & Prahallad, K. (2013). IIIT-H SWS 2013: Gaussian Posteriorgrams of Bottle-Neck Features for Query-by-Example Spoken Term Detection. MediaEval Working Notes Proceedings.
  • Eskevich, M., & Jones, G. J. F. (2013). Time-based segmentation and use of jump-in points in DCU search runs at the Search and Hyperlinking task at MediaEval 2013. MediaEval Working Notes Proceedings.
  • Aoyama, K., Ogawa, A., Hattori, T., Hori, T., & Nakamura, A. (2013). Graph index based query-by-example search on a large speech data set. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
  • Galuščáková, P., & Pecina, P. (2013). CUNI at MediaEval 2013 Similar Segments in Social Speech Task. MediaEval Working Notes Proceedings.
  • Ali, A., & Clements, M. (2013). Spoken Web Search using an Ergodic Hidden Markov Model of Speech. MediaEval Working Notes Proceedings.
  • Bouallegue, M., Senay, G., Morchid, M., Matrouf, D., Linarès, G., & Dufour, R. (2013). LIA@ MediaEval 2013 Spoken Web Search Task: An I-Vector based Approach. MediaEval Working Notes Proceedings.
  • Galuščáková, P., & Pecina, P. (2013). CUNI at MediaEval 2012 Search and Hyperlinking Task. MediaEval Working Notes Proceedings.
  • Ventura, C., Tella-Amo, M., & i Nieto, X. G. (2013). UPC at MediaEval 2013 Hyperlinking Task. MediaEval Working Notes Proceedings.
  • Morchid, M., Dufour, R., & Linares, G. (2013). Event detection from image hosting services by slightly-supervised multi-span context models. International Workshop on Content-Based Multimedia Indexing (CBMI).
  • Lokaj, M., Stiegler, H., & Bailer, W. (2013). TOSCA-MP at Search and Hyperlinking of Television Content Task. MediaEval Working Notes Proceedings.
  • Schouten, K., Aly, R., & Ordelman, R. (2013). Searching and Hyperlinking using Word Importance Segment Boundaries in MediaEval 2013. MediaEval Working Notes Proceedings.
  • Knees, P., & Schedl, M. (2013). Music similarity and retrieval. Proceedings of the International ACM SIGIR.
  • Armagan, A., Popescu, A., & Duygulu, P. (2013). Mucke participation at retrieving diverse social images task of mediaeval 2013. MediaEval Working Notes Proceedings.
  • Goto, S., & Aoki, T. (2013). TUDCL at MediaEval 2013 Violent Scenes Detection: Training with Multi-modal Features by MKL. MediaEval Working Notes Proceedings.
  • Lam, V., Phan, S., Ngo, T. D., Le, D. D., Duong, D. A., & Satoh, S. (2013). Violent scene detection using mid-level feature. Proceedings of the Fourth Symposium on Information and Communication Technology.
  • Sheshadri, A., & Lease, M. (2013). SQUARE: Benchmarking Crowd Consensus at MediaEval. MediaEval Working Notes Proceedings.
  • Hare, J., Acosta, M., Weston, A., Simperl, E., Samangooei, S., Dupplaw, D., & Lewis, P. H. (2013). An investigation of techniques that aim to improve the quality of labels provided by the crowd. MediaEval Working Notes Proceedings.
  • Melle, A., & Dugelay, J. L. (2013). Shape and Color-aware Privacy Protection. MediaEval Working Notes Proceedings.
  • Escalante, H. J., & Morales-Reyes, A. (2013). TIA-INAOE’s Approach for the 2013 Retrieving Diverse Social Images Task. MediaEval Working Notes Proceedings.
  • Radu, A. L., Boteanu, B., Ples, O., & Ionescu, B. (2013). LAPI@ Retrieving Diverse Social Images Task 2013: Qualitative Photo Retrieval using Multimedia Content. MediaEval Working Notes Proceedings.
  • Jarina, R., Kuba, M., Gubka, R., Chmulik, M., & Paralic, M. (2013). UNIZA System for the Spoken Web Search Task at MediaEval2013. MediaEval Working Notes Proceedings.
  • Magliacane, S., & Groth, P. T. (2013). Repurposing Benchmark Corpora for Reconstructing Provenance. SePublica.
  • Georgescu, M., & Zhu, X. (2013). L3S at MediaEval 2013 Crowdsourcing for Social Multimedia Task. MediaEval Working Notes Proceedings.
  • Maniry, D., Acar, E., & Albayrak, S. (2013). DAI at the MediaEval 2013 Visual Privacy Task: Representing People with Foreground Edges. MediaEval Working Notes Proceedings.
  • Lam, V., Le, D. D., Phan, S., Satoh, S., Duong, D. A., & Ngo, T. D. (2013). Evaluation of Low-Level features for detecting Violent Scenes in videos. International Conference on Soft Computing and Pattern Recognition (SoCPaR).
  • Tankoyeu, I., Stöttinger, J., & Giunchiglia, F. (2013). Context-based media geotagging of personal photos. Technical Report.
  • Brenner, M., & Izquierdo, E. (2013). Event-driven retrieval in collaborative photo collections. International Workshop on Image Analysis for Multimedia Interactive Services (WIAMIS).
  • Morchid, M., Dufour, R., Bouallegue, M., Linarès, G., & Matrouf, D. (2013). LIA@ MediaEval 2013 MusiClef Task: A Combined Thematic and Acoustic Approach. MediaEval Working Notes Proceedings.
  • Morchid, M., Dufour, R., Bouallegue, M., Linarès, G., & Matrouf, D. (2013). LIA@ MediaEval 2013 Crowdsourcing Task: Metadata or not Metadata? That is a Fashion Question. MediaEval Working Notes Proceedings.
  • Granada F Garcı́a, Arnal E Sanchı́s, Lance, M. C., Santamarı́a F Pla, & Oliver, L. F. H. (2013). ELIRF at MEDIAEVAL 2013: Similar Segments of Social Speech Task. MediaEval Working Notes Proceedings.
  • Sedky, M. H., Chibelushi, C. C., & Moniri, M. (2013). MediaEval 2013 Visual Privacy Task: Physics-Based Technique for Protecting Privacy in Surveillance Videos. MediaEval Working Notes Proceedings.
  • Sedky, M., Chibelushi, C. C., & Moniri, M. (2013). Physics-Based Technique for Protecting Privacy in Surveillance Videos. MediaEval Working Notes Proceedings.
  • Schmiedeke, S., Kelm, P., & Sikora, T. (2013). TUB@ MediaEval 2013 Visual Privacy Task: Reversible Scrambling with colour-preservative Characteristic. MediaEval Working Notes Proceedings.
  • do Nascimento Teixeira, B. (2013). MTM at MediaEval 2013 Violent Scenes Detection: Through Acoustic-visual Transform. MediaEval Working Notes Proceedings.
  • Gracia, C., Anguera, X., & Binefa, X. (2013). The CMTECH Spoken Web Search System for MediaEval. MediaEval Working Notes Proceedings.
  • Wartena, C. (2013). Segmentation Strategies for Passage Retrieval from Internet Video using Speech Transcripts. Journal of Digital Information Management.
  • Pantoja, C., Arguedas, V. F., & Izquierdo, E. (2013). MediaEval 2013 Visual Privacy Task: Pixel Based Anonymisation Technique. MediaEval Working Notes Proceedings.
  • Yanai, K., & Nga, D. H. (2013). UEC, Tokyo at MediaEval 2013 Retrieving Diverse Social Images Task. MediaEval Working Notes Proceedings.
  • Tserpes, K., Kardara, M., & Varvarigou, T. (2013). A similarity-based Chinese Restaurant Process for Social Event Detection. MediaEval Working Notes Proceedings.
  • Garcia, J. L. R., Troncy, R., & Pikora, L. (2013). LinkedTV at MediaEval 2013 Search and Hyperlinking Task. MediaEval Working Notes Proceedings.
  • Ruocco, M., & Ramampiaro, H. (2013). Event-related image retrieval: exploring geographical and temporal distribution of user tags. International Journal of Multimedia Information Retrieval.
  • Apostolidis, E., Mezaris, V., Stein, C. D., & Eickeler, S. (2013). Television Linked To The Web.
  • Petkos, G., Papadopoulos, S., & Kompatsiaris, Y. (2012). Social event detection using multimodal clustering and integrating supervisory signals. Proceedings of the ACM International Conference on Multimedia Retrieval.
  • Metze, F., Barnard, E., Davel, M., Heerden, C. V., Anguera, X., Gravier, G., & Rajput, N. (2012). The spoken web search task. MediaEval Working Notes Proceedings.
  • Hauff, C., & Houben, G. J. (2012). Placing images on the world map: a microblog-based enrichment approach. Proceedings of the International ACM SIGIR.
  • Brenner, M., & Izquierdo, E. (2012). Social event detection and retrieval in collaborative photo collections. Proceedings of the ACM International Conference on Multimedia Retrieval.
  • Penatti, O. A. B., Li, L. T., Almeida, J., & da S Torres, R. (2012). A visual approach for video geocoding using bag-of-scenes. Proceedings of the ACM International Conference on Multimedia Retrieval.
  • Penet, C., Demarty, C. H., Gravier, G., & Gros, P. (2012). Multimodal information fusion and temporal integration for violence detection in movies. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
  • Wang, Y., Sundaram, H., & Xie, L. (2012). Social event detection with interaction graph modeling. Proceedings of the ACM International Conference on Multimedia.
  • Abad, A., Astudillo, R. F., & Trancoso, I. (2012). The L2F Spoken Web Search system for Mediaeval 2012. MediaEval Working Notes Proceedings.
  • Schinas, E., Petkos, G., Papadopoulos, S., & Kompatsiaris, Y. (2012). CERTH@ MediaEval 2012 Social Event Detection Task. MediaEval Working Notes Proceedings.
  • Baulida, A. L. (2012). Semantic and Diverse Summarization of Egocentric Photo Events. M. Sc. Visions and Robotics Thesis.
  • Hauff, C., & Houben, G. J. (2012). Geo-location estimation of flickr images: Social web based enrichment. European Conference on Information Retrieval.
  • Lei, H., Choi, J., & Friedland, G. (2012). Multimodal city-verification on flickr videos using acoustic and textual features. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
  • Choi, J., Friedland, G., Ekambaram, V., & Ramchandran, K. (2012). Multimodal location estimation of consumer media: Dealing with sparse training data. IEEE International Conference on Multimedia and Expo.
  • Eskevich, M., Jones, G. J. F., Wartena, C., Larson, M., Aly, R., Verschoor, T., & Ordelman, R. (2012). Comparing retrieval effectiveness of alternative content segmentation methods for internet video search. International Workshop on Content-Based Multimedia Indexing.
  • Jones, G. J. F. (2012). An introduction to crowdsourcing for language and multimedia technology research. PROMISE Winter School.
  • Wartena, C. (2012). Comparing segmentation strategies for efficient video passage retrieval. IEEE International Workshop on Content-Based Multimedia Indexing (CBMI).
  • Li, L. T., Almeida, J., Pedronette, D. C. G., Penatti, O. A. B., & da S Torres, R. (2012). A multimodal approach for video geocoding. MediaEval Working Notes Proceedings.
  • Kelm, P., Schmiedeke, S., & Sikora, T. (2012). How Spatial Segmentation improves the Multimodal Geo-Tagging. MediaEval Working Notes Proceedings.
  • Derbas, N., Thollard, F., Safadi, B., & Quénot, G. (2012). Lig at mediaeval 2012 affect task: use of a generic method. MediaEval Working Notes Proceedings.
  • Schlater, J., Ionescu, B., Mironica, I., & Schedl, M. (2012). ARF@ MediaEval 2012: An Uninformed Approach to Violence Detection in Hollywood Movies. MediaEval Working Notes Proceedings.
  • Eyben, F., Weninger, F., Lehment, N., Rigoll, G., & Schuller, B. (2012). Violent scenes detection with large, brute-forced acoustic and visual feature sets. MediaEval Working Notes Proceedings.
  • Zeppelzauer, M., Zaharieva, M., & Breiteneder, C. (2012). A Generic Approach for Social Event Detection in Large Photo Collections. MediaEval Working Notes Proceedings.
  • Brenner, M., & Izquierdo, E. (2012). QMUL@ MediaEval 2012: Social Event Detection in Collaborative Photo Collections. MediaEval Working Notes Proceedings.
  • Li, L. T., Pedronette, D. C. G., Almeida, J., Penatti, O. A., Calumby, R. T., & da S Torres, R. (2012). Multimedia multimodal geocoding. ACM International Conference on Advances in Geographic Information Systems.
  • Acar, E., & Albayrak, S. (2012). DAI Lab at MediaEval 2012 Affect Task: The Detection of Violent Scenes using Affective Features. MediaEval Working Notes Proceedings.
  • Eskevich, M., Jones, G. J. F., Larson, M., & Ordelman, R. (2012). Creating a data collection for evaluating rich speech retrieval. International Conference on Language Resources and Evaluation (LREC).
  • Li, X., Hauff, C., Larson, M., & Hanjalic, A. (2012). Preliminary Exploration of the Use of Geographical Information for Content-based Geo-tagging of Social Video. MediaEval Working Notes Proceedings.
  • Varona, A., Penagarikano, M., Rodríguez-Fuentes, L. J., Bordel, G., & Diez, M. (2012). GTTS System for the Spoken Web Search Task at MediaEval 2012. MediaEval Working Notes Proceedings.
  • Dao, M. S., Nguyen, T. V., Boato, G., & Natale, F. G. B. D. (2012). The Watershed-based Social Events Detection Method with Support from External Data Sources. MediaEval Working Notes Proceedings.
  • Jiang, Y. G., Dai, Q., Tan, C. C., Xue, X., & Ngo, C. W. (2012). The Shanghai-Hongkong Team at MediaEval2012: Violent Scene Detection Using Trajectory-based Features. MediaEval Working Notes Proceedings.
  • Schmiedeke, S., Kelm, P., & Sikora, T. (2012). Cross-modal categorisation of user-generated video sequences. ACM International Conference on Multimedia Retrieval.
  • Penet, C., Demarty, C. H., Soleymani, M., Gravier, G., & Gros, P. (2012). Technicolor/inria/imperial college london at the mediaeval 2012 violent scene detection task. MediaEval Working Notes Proceedings.
  • Laere, O. V., Schockaert, S., Quinn, J., Langbein, F. C., & Dhoedt, B. (2012). Ghent and cardiff university at the 2012 placing task. MediaEval Working Notes Proceedings.
  • Choi, J., Ekambaram, V. N., Friedland, G., & Ramchandran, K. (2012). The 2012 ICSI/Berkeley Video Location Estimation System. MediaEval Working Notes Proceedings.
  • Nies, T. D., Debevere, P., Deursen, D. V., Neve, W. D., Mannens, E., & de Walle, R. V. (2012). Ghent University-IBBT at MediaEval 2012 Search and Hyperlinking: Semantic Similarity using Named Entities. MediaEval Working Notes Proceedings.
  • Diplaris, S., Petkos, G., Papadopoulos, S., Kompatsiaris, Y., Sarris, N., Martin, C., Goker, A., Corney, D., Geurts, J., Liu, Y., & Point, J. C. (2012). Social sensor: Surfacing real-time trends and insights from multiple social networks. NEM Summit Proceedings.
  • Penatti, O. A. B., Valle, E., & Torres, R. S. (2012). Image and video representations based on visual dictionaries. Ph. D. Thesis, Universidade Estadual De Campinas.
  • Fleureau, J., Penet, C., Guillotel, P., & Demarty, C. H. (2012). Electrodermal activity applied to violent scenes impact measurement and user profiling. IEEE International Conference on Systems, Man, and Cybernetics (SMC).
  • Ruocco, M. (2012). Context-aware image semantic extraction in the social web. ACM International Conference on World Wide Web.
  • Nadeem, D., Aly, R., & Ordelman, R. (2012). UTwente does Brave New Tasks for MediaEval 2012: Searching and Hyperlinking. MediaEval Working Notes Proceedings.
  • Badii, A., & Einig, M. (2012). MediaEval 2012 Visual Privacy Task: Privacy, Intelligibility through Pixellation and Edge Detection. MediaEval Working Notes Proceedings.
  • Lei, J. C., & Friedland, G. (2012). Multimodal city-identification on flickr videos using acoustic and textual features. Proceedings of the ACM International Conference on Multimedia.
  • Oviedo, A. I., Ortega, O., Perea-Ortega, J. M., & Sanchis, E. (2012). Video clustering based on the collaboration of multimedia clusterers. Conferencia Latinoamericana En Informatica (CLEI).
  • Florian, M., Nitendra, R., Xavier, A., Marelie, D., & ... (2012). The spoken web search task at MediaEval 2011. MediaEval Working Notes Proceedings.
  • Eskevich, M., & Jones, G. J. F. (2012). DCU search runs at MediaEval 2012: search and hyperlinking task. MediaEval Working Notes Proceedings.
  • Choi, J. (2012). A Multimodal Approach to Automatic Geo-Tagging of Video.
  • Choi, J., Janin, A., & Friedland, G. (2011). The 2010 ICSI video location estimation system. MediaEval Working Notes Proceedings.
  • Laere, O. V., Schockaert, S., & Dhoedt, B. (2011). Ghent university at the 2011 Placing Task. MediaEval Working Notes Proceedings.
  • Brenner, M., & Izquierdo, E. (2011). MediaEval Benchmark: Social Event Detection in collaborative photo collections. MediaEval Working Notes Proceedings.
  • Liu, X., Huet, B., & Troncy, R. (2011). EURECOM@ MediaEval 2011 Social Event Detection Task. MediaEval Working Notes Proceedings.
  • Li, L. T., Almeida, J., & da Silva Torres, R. (2011). RECOD Working Notes for Placing Task MediaEval 2011. MediaEval Working Notes Proceedings.
  • Cigarran, J., Fresno, V., García-Serrano, A., & Granados, D. H.-A. & R. (2011). UNED at MediaEval 2011: can delicious help us to improve automatic video tagging? MediaEval Working Notes Proceedings.
  • Wang, Y., Xie, L., & Sundaram, H. (2011). Social Event Detection with clustering and filtering. MediaEval Working Notes Proceedings.
  • Hauff, C., & Houben, G. J. (2011). WISTUD at MediaEval 2011: Placing Task. MediaEval Working Notes Proceedings.
  • Papadopoulos, S., Zigkolis, C., Kompatsiaris, Y., & Vakali, A. (2011). CERTH@ MediaEval 2011 Social Event Detection Task. MediaEval Working Notes Proceedings.
  • Söke, I., Tejedor, J., Fapso, M., & Colás, J. (2011). BUT-HCTLab approaches for Spoken Web Search-MediaEval 2011. MediaEval Working Notes Proceedings.
  • Gninkoun, G., & Soleymani, M. (2011). Automatic violence scenes detection: A multi-modal approach. MediaEval Working Notes Proceedings.
  • Hintsa, T., Vainikainen, S., & Melin, M. (2011). Leveraging linked data in Social Event Detection. MediaEval Working Notes Proceedings.
  • Anguera, X. (2011). Telefonica System for the Spoken Web Search Task at Mediaeval 2011. MediaEval Working Notes Proceedings.
  • Barnard, E., Davel, M., van Heerden, C., Kleynhans, N., & Bali, K. (2011). Phone recognition for spoken web search. MediaEval Working Notes Proceedings.
  • Penet, C., Demarty, C. H., Gravier, G., & Gros, P. (2011). Technicolor and inria/irisa at mediaeval 2011: learning temporal modality integration with bayesian networks. MediaEval Working Notes Proceedings.
  • Muscariello, A., & Gravier, G. (2011). Irisa MediaEval 2011 Spoken Web Search System. MediaEval Working Notes Proceedings.
  • Acar, E., Spiegel, S., Albayrak, S., & Labor, D. A. I. (2011). MediaEval 2011 Affect Task: Violent Scene Detection combining audio and visual Features with SVM. MediaEval Working Notes Proceedings.
  • Krippner, F., Meier, G., Hartmann, J., & Knauf, R. (2011). Placing media items using the Xtrieval Framework. MediaEval Working Notes Proceedings.
  • Morchid, M., & Linarès, G. (2011). Mediaeval benchmark: Social Event Detection using LDA and external resources. MediaEval Working Notes Proceedings.
  • Glotin, H., Razik, J., Paris, S., & Prevot, J. M. (2011). Real-time entropic unsupervised violent scenes detection in Hollywood movies-DYNI@ MediaEval Affect Task 2011. MediaEval Working Notes Proceedings.
  • Ferrés, D., & Rodríguez, H. (2011). TALP at MediaEval 2011 Placing Task: Georeferencing Flickr videos with geographical knowledge and information retrieval. MediaEval Working Notes Proceedings.
  • Safadi, B., & Quénot, G. (2011). Lig at mediaeval 2011 affect task: use of a generic method. MediaEval Working Notes Proceedings.
  • Rouvier, M., & Linarès, G. (2011). LIA@ MediaEval 2011: Compact representation of heterogeneous descriptors for video genre classification. MediaEval Working Notes Proceedings.
  • Rudinac, S., Larson, M., & Hanjalic, A. (2011). TUD-MIR at MediaEval 2011 Genre Tagging Task: Query expansion from a limited number of labeled videos. MediaEval Working Notes Proceedings.
  • Schmiedeke, S., Kelm, P., & Sikora, T. (2011). TUB@ MediaEval 2011 genre tagging task: prediction using bag-of-(visual)-words approaches. MediaEval Working Notes Proceedings.
  • Schmidt, K., Korner, T., Heinich, S., & Wilhelm, T. (2011). A Two-step Approach to Video Retrieval based on ASR transcriptions. MediaEval Working Notes Proceedings.
  • Aly, R., Verschoor, T., & Ordelman, R. (2011). UTwente does Rich Speech Retrieval at MediaEval 2011. MediaEval Working Notes Proceedings.
  • Wartena, C., & Larson, M. (2011). Rich Speech Retrieval Using Query Word Filter. MediaEval Working Notes Proceedings.
  • Ruocco, M., & Ramampiaro, H. (2011). Ntnu@ mediaeval2011: Social event detection task (sed). MediaEval Working Notes Proceedings.
  • Semela, T., & Ekenel, H. K. (2011). KIT at MediaEval 2011-Content-based genre classification on web-videos. MediaEval Working Notes Proceedings.
  • Tiwari, R., Zhang, C., & Montes, M. (2011). UAB at MediaEval 2011: Genre Tagging Task. MediaEval Working Notes Proceedings.
  • Perea-Ortega, J. M., Montejo-Ráez, A., Díaz-Galiano, M. C., & Martín-Valdivia, M. T. (2011). Genre tagging of videos based on information retrieval and semantic similarity using WordNet. MediaEval Working Notes Proceedings.
  • Alink, W., & Cornacchia, R. (2011). Out-of-the-box strategy for Rich Speech Retrieval MediaEval 2011. MediaEval Working Notes Proceedings.
  • Eskevich, M., & Jones, G. J. F. (2011). DCU at MediaEval 2011: Rich Speech Retrieval (RSR). MediaEval Working Notes Proceedings.
  • Ionescu, B., Seyerlehner, K., Vertan, C., & Lambert, P. (2011). Audio-Visual content description for video genre classification in the context of social media. MediaEval Working Notes Proceedings.
  • Bassman, T. J., Hanif, U., & Xia, E. Detecting Flooding in Social Media Imagery Using Multimodal Deep Learning.
  • Ahmad, A., Badshah, N., & Hassan, M. U. A Modified Memory-Efficient U-Net for Segmentation of Polyps.
  • Scales, L. Predicting Short-term Media Memorability from Captions.
  • Jony, R. I., Woodley, A., & Perrin, D. Fusing Visual Features and Metadata to Detect Flooding in Flickr Images. 2020 Digital Image Computing: Techniques and Applications (DICTA), 1–8.