Skip to the content.

Submission results

Leaderboard - PR-AUC-macro

  Team Run PR-AUC-macro ROC-AUC-macro External data
1 lileonardo 3-average 0.150872 0.774789 -
2 lileonardo 2-filters 0.147867 0.770340 -
3 lileonardo 1-convs 0.146867 0.769089 -
4 SELAB-HCMUS Run4 0.143531 0.759913 -
5 SELAB-HCMUS Run1 0.141580 0.757486 -
6 Mirable ensemble 0.135657 0.768738 MTG-Jamendo
7 SELAB-HCMUS Run2 0.134324 0.750496 -
8 Mirable short-chunk 0.127531 0.754153 -
9 SELAB-HCMUS Run3 0.126185 0.746375 -
10 Mirable noisy-student 0.123515 0.761398 MTG-Jamendo
11 UIBK-DBIS run1_ensemble_vggish_kmeans 0.108741 0.704668 -
12 baseline vggish 0.107734 0.725821 -
13 UIBK-DBIS run3_ensemble_vggish_dikmeans_4 0.098415 0.682911 -
14 UIBK-DBIS run5_ensemble_resnet_linear_4 0.092162 0.699669 -
15 UIBK-DBIS run2_ensemble_resnet_kmeans 0.091039 0.691661 -
16 UIBK-DBIS run4_ensemble_resnet_dikmeans_4 0.079915 0.680712 -
17 baseline popular 0.031924 0.500000 -

Leaderboard - F-score-macro

  Team Run F-score-macro External data
1 lileonardo 3-average 0.209059 -
2 lileonardo 2-filters 0.205304 -
3 lileonardo 1-convs 0.204764 -
4 SELAB-HCMUS Run4 0.202348 -
5 SELAB-HCMUS Run1 0.201774 -
6 Mirable ensemble 0.197800 MTG-Jamendo
7 SELAB-HCMUS Run2 0.191837 -
8 Mirable short-chunk 0.186429 -
9 SELAB-HCMUS Run3 0.184957 -
10 Mirable noisy-student 0.183349 MTG-Jamendo
11 baseline vggish 0.165694 -
12 UIBK-DBIS run3_ensemble_vggish_dikmeans_4 0.110302 -
13 UIBK-DBIS run1_ensemble_vggish_kmeans 0.109937 -
14 UIBK-DBIS run5_ensemble_resnet_linear_4 0.105877 -
15 UIBK-DBIS run2_ensemble_resnet_kmeans 0.103954 -
16 UIBK-DBIS run4_ensemble_resnet_dikmeans_4 0.097726 -
17 baseline popular 0.002642 -

Precision vs recall (macro)

All submissions

Mirable

Source code: https://github.com/gudgud96/noisy-student-emotion-training

Paper: https://2021.multimediaeval.com/paper17.pdf

  PR-AUC-macro ROC-AUC-macro F-score-macro precision-macro recall-macro PR-AUC-micro ROC-AUC-micro F-score-micro precision-micro recall-micro
ensemble 0.135657 0.768738 0.197800 0.167775 0.409949 0.157657 0.809137 0.173493 0.106134 0.474881
noisy-student 0.123515 0.761398 0.183349 0.150479 0.364476 0.124938 0.801377 0.175060 0.110089 0.427155
short-chunk 0.127531 0.754153 0.186429 0.150843 0.384173 0.162436 0.798875 0.170853 0.105537 0.448308

SELAB-HCMUS

Source code: https://github.com/phoaiphuthinh/MediaEval2021Emotions

Paper: https://2021.multimediaeval.com/paper44.pdf

  PR-AUC-macro ROC-AUC-macro F-score-macro precision-macro recall-macro PR-AUC-micro ROC-AUC-micro F-score-micro precision-micro recall-micro
Run1 0.141580 0.757486 0.201774 0.169763 0.393467 0.159171 0.800374 0.172549 0.106947 0.446325
Run2 0.134324 0.750496 0.191837 0.164775 0.358637 0.141714 0.791295 0.179068 0.113607 0.422528
Run3 0.126185 0.746375 0.184957 0.155460 0.368292 0.150162 0.794956 0.165861 0.104359 0.403887
Run4 0.143531 0.759913 0.202348 0.171926 0.378606 0.161228 0.801871 0.180733 0.114378 0.430460

UIBK-DBIS

Source code: https://github.com/dbis-uibk/MediaEval2021

Paper: https://2021.multimediaeval.com/paper14.pdf

  PR-AUC-macro ROC-AUC-macro F-score-macro precision-macro recall-macro PR-AUC-micro ROC-AUC-micro F-score-micro precision-micro recall-micro
run1_ensemble_vggish_kmeans 0.108741 0.704668 0.109937 0.063610 0.667232 0.132411 0.764757 0.103718 0.056186 0.673321
run2_ensemble_resnet_kmeans 0.091039 0.691661 0.103954 0.059228 0.660818 0.104683 0.749825 0.103206 0.055820 0.683104
run3_ensemble_vggish_dikmeans_4 0.098415 0.682911 0.110302 0.065357 0.614513 0.118523 0.748293 0.102883 0.056046 0.626124
run4_ensemble_resnet_dikmeans_4 0.079915 0.680712 0.097726 0.055330 0.665770 0.096578 0.734685 0.096959 0.052217 0.677287
run5_ensemble_resnet_linear_4 0.092162 0.699669 0.105877 0.061531 0.631955 0.110435 0.759330 0.105549 0.057528 0.638683

baseline

Source code: https://github.com/MTG/mtg-jamendo-dataset

Paper: https://2021.multimediaeval.com/paper6.pdf

  PR-AUC-macro ROC-AUC-macro F-score-macro precision-macro recall-macro PR-AUC-micro ROC-AUC-micro F-score-micro precision-micro recall-micro
popular 0.031924 0.500000 0.002642 0.001427 0.017857 0.034067 0.513856 0.057312 0.079887 0.044685
vggish 0.107734 0.725821 0.165694 0.138216 0.308650 0.140913 0.775029 0.177133 0.116097 0.373480

lileonardo

Source code: https://github.com/vibour/emotion-theme-recognition

Paper: https://2021.multimediaeval.com/paper21.pdf

  PR-AUC-macro ROC-AUC-macro F-score-macro precision-macro recall-macro PR-AUC-micro ROC-AUC-micro F-score-micro precision-micro recall-micro
1-convs 0.146867 0.769089 0.204764 0.173581 0.386601 0.166450 0.799516 0.181043 0.113733 0.443548
2-filters 0.147867 0.770340 0.205304 0.174992 0.368903 0.173629 0.799787 0.197082 0.127036 0.439318
3-average 0.150872 0.774789 0.209059 0.183774 0.408175 0.174246 0.804873 0.184954 0.115387 0.465759