
ICSI in MediaEval 2017 Multi-Genre Music Task
Kijung Kim1, Jaeyoung Choi2

1University of California, Berkeley, CA, United States
2International Computer Science Institute, Berkeley, CA, USA

kijung@berkeley.edu,jaeyoung@icsi.berkeley.edu

ABSTRACT
We present our approach and result for the MediaEval 2017 Acous-
ticBrainz Content-based music genre recognition task. Experimen-
tal results show that the best results come from random forest with
partial feature selection.

1 INTRODUCTION
The 2017 Content-based music genre recognition from multiple
sources Task [1] consists of two subtasks: single source classifi-
cation and multiple source classification. We focused on the first
subtask, which the goal was to predict genres using a single source
of ground truth with broad genre categories as class labels. In the
following sections, we describe our feature formulation, models
and experiments in details.

2 TECHNICAL APPROACH
The proposed framework can be divided into three phases: (1)

feature formulation , (2) standardization, and (3) model selection
and predictions.

(1) Feature Formulation The dataset provides each song
with three groups of pre-extracted features: tonal, rhythm, and
low-level. A feature vector for each song was formed as a concate-
nation of all the individual features from each group. For features
with specifics labels such as mean, max, and min, they were simply
concatenated together. For the sake of simplicity, categorical fea-
tures were not considered. The excluded features are: "key_key",
"key_scale", "chords_key", and "chords_scale". The "beats_position"
was excluded as the feature for each song has variable length, and
we assumed that the features "bpm" and "beats counts" were suffi-
cient. This resulted in a 2647-dimensional feature vector for each
song.

(2) StandardizationWe randomly sampled a subset of 100,000
songs for each dataset, formulated the feature vector, and computed
the mean and standard deviation for all indicies in the feature vec-
tor. Then, at the test phase, each feature was standardized using
the pre-computed mean and standard deviation.

(3)Model Selection and Predictions From scikit-learn [6],
two classifiers used in our approach were the Stochastic Gradient
Descent (SGD) classifier with hinge loss and Random Forest clas-
sifier with 16 estimators [2]. A binary classifier was trained for
each genre/subgenre, the results were conglomerated together and
prediction for each genre/subgenre was made independently.

The first two Runs consisted of concatenating all provided fea-
tures (except the ones mentioned above) and using the SGD classi-
fier.

Copyright held by the owner/author(s).
MediaEval’17, 13-15 September 2017, Dublin, Ireland

2.1 Stochastic Gradient Descent Classifier: Run
1 and 2

Run 1 consisted of each song having a concatenated feature
vector of all features minus the ones mentioned above with the
SGDClassifier. To accommodate for large data, batch training of
size 80,000 was used.

Run 2’s feature formulation and the model is the same as Run
1. The difference is in the prediction process. The procedure was
to look at the results for each song and mainly go with the genre
prediction. For example, given main genre A has subgenres B,C and
main genre D has subgenres E, F, if the classifiers classified a song as
main genre A with subgenres C,D, and F but does not classify it as
main genre D, because main genre D was not predicted, the predic-
tions will ignore subgenre F, and the final prediction will be genre
A with subgenres C,D. In short, subgenre predictions were ignored
if their main "parent" genres were not predicted. This approach was
to decrease the chance of false positives for subgenres. In short, we
made a system of hierarchy and weighed genre predictions higher
than subgenre predictions.

2.2 RandomForest with Parital Feature
Selection: Run 3, 4 and 5

For the next three Runs, we used random forest classifier (RFC)
with partial feature selection. We used the feature importance [4]
from the trained random forest classifier. We first took a subset of
the train data (around 100,000 songs), formulated a concatenated
feature vector for each song, and fit the features to the RFC for each
genre and subgenre. Then, we used the ranked feature importance
list from the classifier to select the x% best features, which resulted
in different best features for each genre and subgenre [5]. From
there, we trained all-for-one RFC’s using the top x% features for
each genre and subgenre with its own x% best features, and used a
subset of the train data (around 150,000 songs). Finally, prediction
of the genres were made based on a conglomeration of all the RFC’s.

Run 3, 4, and 5 used the top 25%, 50%, and 75% of the features
from the ranked list of feature importance from the trained RFC,
that resulted in a 661, 1323, and 1985 dimensional feature vector
per song, respectively.

3 RESULTS AND ANALYSIS
In this section, we report accumulated results on the sub-task

based on our two different approaches.1 Our results are reported
in Figure 1. The test set is composed of three different databases
(Discogs, Lastfm, Tagtraum), and we took the average of precision,
recall, and f-score to obtain single number.

We observe that the approaches based on the Random Forest
Classifiers (Runs 3, 4, 5) outperform the SGD Classifier approaches
1https://multimediaeval.github.io/2017-AcousticBrainz-Genre-Task/results/



MediaEval’17, 13-15 September 2017, Dublin, Ireland Kijung Kim1, Jaeyoung Choi2

Table 1: Subtask 1 Results

dataset Run Ptrackall Rtrackall Ftrackall Ptrackgen Rtrackgen Ftrackgen Ptracksub Rtracksub Ftracksub Plabelall Rlabelall Flabelall Plabelgen Rlabelgen Flabelgen Plabelsub Rlabelsub Flabelsub

discogs Run 1 0.0109 0.65 0.0214 0.0989 0.791 0.172 0.006 0.5171 0.0117 0.0104 0.5702 0.0163 0.0963 0.7399 0.1471 0.0061 0.5617 0.0098
discogs Run 2 0.0136 0.6083 0.0264 0.0989 0.791 0.172 0.0069 0.4322 0.0135 0.0105 0.4496 0.0164 0.0963 0.7399 0.1471 0.0062 0.435 0.0099
discogs Run 3 0.032 0.3337 0.0568 0.2059 0.4023 0.2475 0.0181 0.2735 0.0331 0.0247 0.2484 0.0349 0.1375 0.3149 0.1638 0.0191 0.2451 0.0285
discogs Run 4 0.028 0.3621 0.0508 0.1725 0.4595 0.2326 0.0153 0.2823 0.0284 0.0191 0.2585 0.0293 0.1095 0.351 0.1409 0.0146 0.2538 0.0237
discogs Run 5 0.0216 0.3493 0.0401 0.0999 0.3943 0.1513 0.0136 0.3092 0.0257 0.016 0.2764 0.025 0.0889 0.3908 0.117 0.0123 0.2707 0.0204
lastfm Run 1 0.0065 0.4746 0.0129 0.0454 0.4887 0.0824 0.0048 0.4981 0.0096 0.0089 0.5392 0.0105 0.0553 0.4076 0.0466 0.0042 0.5525 0.0068
lastfm Run 2 0.0097 0.3715 0.0187 0.0454 0.4887 0.0824 0.0054 0.2648 0.0106 0.0117 0.268 0.0089 0.0553 0.4076 0.0466 0.0073 0.2539 0.0051
lastfm Run 3 0.0385 0.2619 0.0637 0.0993 0.3053 0.1406 0.0274 0.219 0.0461 0.0307 0.2075 0.0406 0.0926 0.2585 0.1026 0.0244 0.2023 0.0343
lastfm Run 4 0.0338 0.2711 0.0575 0.0883 0.3338 0.1331 0.0219 0.202 0.0379 0.0264 0.1978 0.0353 0.0815 0.2831 0.1049 0.0208 0.1892 0.0282
lastfm Run 5 0.0273 0.277 0.0483 0.0691 0.3284 0.1098 0.0191 0.2187 0.0341 0.0217 0.206 0.0311 0.0591 0.277 0.0795 0.0179 0.1989 0.0262

tagtraum Run 1 0.0114 0.5375 0.0222 0.0372 0.3977 0.0673 0.0095 0.6141 0.0187 0.0129 0.5859 0.0185 0.0509 0.4937 0.0514 0.0084 0.5967 0.0146
tagtraum Run 2 0.0129 0.3272 0.0246 0.0371 0.3981 0.0673 0.0082 0.2519 0.0157 0.0151 0.2915 0.018 0.0509 0.494 0.0513 0.011 0.2678 0.0141
tagtraum Run 3 0.0487 0.2655 0.0782 0.1213 0.3366 0.1654 0.0318 0.2137 0.0528 0.0384 0.2099 0.0488 0.111 0.3349 0.1327 0.0299 0.1953 0.039
tagtraum Run 4 0.0456 0.3201 0.0774 0.1276 0.4357 0.1876 0.0273 0.2432 0.0477 0.0326 0.2257 0.0443 0.0957 0.3291 0.1232 0.0253 0.2136 0.0351
tagtraum Run 5 0.0336 0.2968 0.0589 0.0636 0.3376 0.1038 0.0259 0.2562 0.0458 0.0262 0.2324 0.0374 0.0722 0.3845 0.094 0.0208 0.2146 0.0307

(Runs 1, 2). In particular, we note that the recall in Runs 1, 2 is
especially high while the precision is especially low, which meant
the classifiers predicted each song with almost every label. For Runs
3, 4, and 5, we observe a significantly lower recall with a better
precision.

For Runs 3, 4, and 5, we observe a trend that by adding additional
features, the recall improves at the cost of precision. However, Run
5 disproves such trend, as it shows that Run 5 gives only better
recall for per-label results while showing worse result in all metrics
in per-track results.

4 CONCLUSION
Runs 1 and 2 clearly suffered from oversampling, which lead

the classifiers in most genres to predict positive, which resulted in
high recall and low precision. Runs 3,4, and 5 did not suffer like
Runs 1 and 2, but upon observing precision, recall, and f-scores for
each genre, the classifiers did far worse on non-popular genres and
subgenres, which lead to overall lower precision and recall.

The shortcomings came, for Runs 1 and 2, from errors in sam-
pling. These sampling errors were technical, as they originated
from code. For Runs 3,4, and 5, the shortcomings came from a lack
of a system to combine results from different classifiers. For one,
we could have exploited the probabilities generated from the model
for each prediction to ascertain a threshold for each genre and
subgenre. This would have helped especially for sparse subgenres.

For future works, for Runs 1, 2, it would be interesting to see if
taking less top % of the features from the feature importance list
for each genre and subgenre will improve precision. Also, it may be
worth trying majority voting by training several different random
forest classifiers using the feature importance list. Lastly, it would
be interesting to try the imbalanced-learn package [3] which is
compatible with scikit-learn and may fix the class imbalance for
Runs 1 and 2.

ACKNOWLEDGMENTS
This work was supported in part by AWS Research Grants.

REFERENCES
[1] Dmitry Bogdanov, Alastair Porter, Julian Urbano, and Hendrik

Schreiber. 2017. The Mediaeval 2017 AcousticBrainz Genre Task:
Content-based music genre recognition from multiple sources. Proc.
of the MediaEval 2017 Workshop, Dublin, Ireland, Sept. 13-15, 2017
(2017).

[2] BenHoyle, MarkusMichael Rau, Roman Zitlau, Stella Seitz, and Jochen
Weller. 2015. Feature importance for machine learning redshifts ap-
plied to SDSS galaxies. Monthly Notices of the Royal Astronomical
Society 449, 2 (2015), 1275–1283.

[3] Guillaume Lemaitre, Fernando Nogueira, and Christos K Aridas. 2017.
Imbalanced-learn: A python toolbox to tackle the curse of imbalanced
datasets in machine learning. Journal of Machine Learning Research
18, 17 (2017), 1–5.

[4] Gilles Louppe. 2014. Understanding random forests: From theory to
practice. arXiv preprint arXiv:1407.7502 (2014).

[5] Gilles Louppe, Louis Wehenkel, Antonio Sutera, and Pierre Geurts.
2013. Understanding variable importances in forests of randomized
trees. In Advances in neural information processing systems. 431–439.

[6] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O.
Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,
A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.
2011. Scikit-learn: Machine Learning in Python. Journal of Machine
Learning Research 12 (2011), 2825–2830.


	Abstract
	1 Introduction
	2 Technical Approach
	2.1 Stochastic Gradient Descent Classifier: Run 1 and 2
	2.2 RandomForest with Parital Feature Selection: Run 3, 4 and 5

	3 Results and Analysis
	4 Conclusion
	Acknowledgments
	References

